Suppr超能文献

基于化学信息学的人类酪氨酸激酶抑制剂药物发现

Cheminfomatic-based Drug Discovery of Human Tyrosine Kinase Inhibitors.

作者信息

Reid Terry-Elinor, Fortunak Joseph M, Wutoh Anthony, Simon Wang Xiang

机构信息

Molecular Modeling and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, Howard University, Washington, District of Columbia 20059, USA.

出版信息

Curr Top Med Chem. 2016;16(13):1452-62. doi: 10.2174/1568026615666150915120814.

Abstract

Receptor Tyrosine Kinases (RTKs) are essential components for regulating cell-cell signaling and communication events in cell growth, proliferation, differentiation, survival and metabolism. Deregulation of RTKs and their associated signaling pathways can lead to a wide variety of human diseases such as immunodeficiency, diabetes, arterosclerosis, psoriasis and cancer. Thus RTKs have become one of the most important drug targets families in recent decade. Pharmaceutical companies have dedicated their research efforts towards the discovery of small-molecule inhibitors of RTKs, many of which had been approved by the U.S. Food and Drug Administration (US FDA) or are currently in clinical trials. The great successes in the development of small-molecule inhibitors of RTKs are largely attributed to the use of modern cheminformatic approaches to identifying lead scaffolds. Those include the quantitative structure-activity relationship (QSAR) modeling, as well as the structure-, and ligand-based pharmacophore modeling techniques in this case. Herein we inspected the literature thoroughly in an effort to conduct a comparative analysis of major findings regarding the essential structure-activity relationships (SARs)/pharmacophore features of known active RTK inhibitors, most of which were collected from cheminformatic modeling approaches.

摘要

受体酪氨酸激酶(RTKs)是调节细胞生长、增殖、分化、存活和代谢过程中细胞间信号传导和通讯事件的重要组成部分。RTKs及其相关信号通路的失调可导致多种人类疾病,如免疫缺陷、糖尿病、动脉粥样硬化、银屑病和癌症。因此,RTKs已成为近十年来最重要的药物靶点家族之一。制药公司致力于发现RTKs的小分子抑制剂,其中许多已被美国食品药品监督管理局(US FDA)批准或目前正在进行临床试验。RTKs小分子抑制剂开发的巨大成功很大程度上归功于使用现代化学信息学方法来识别先导骨架。这些方法包括定量构效关系(QSAR)建模,以及在这种情况下基于结构和配体的药效团建模技术。在此,我们全面查阅了文献,以便对已知活性RTK抑制剂的基本构效关系(SARs)/药效团特征的主要研究结果进行比较分析,其中大部分是从化学信息学建模方法中收集的。

相似文献

1
Cheminfomatic-based Drug Discovery of Human Tyrosine Kinase Inhibitors.
Curr Top Med Chem. 2016;16(13):1452-62. doi: 10.2174/1568026615666150915120814.
2
Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors.
Eur J Med Chem. 2011 Jun;46(6):2185-92. doi: 10.1016/j.ejmech.2011.02.072. Epub 2011 Mar 11.
3
Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors.
Bioorg Chem. 2018 Apr;77:84-100. doi: 10.1016/j.bioorg.2018.01.008. Epub 2018 Jan 4.
4
Exploration of Novel Inhibitors for Bruton's Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation.
PLoS One. 2016 Jan 19;11(1):e0147190. doi: 10.1371/journal.pone.0147190. eCollection 2016.
5
Discovery and optimization of indazoles as potent and selective interleukin-2 inducible T cell kinase (ITK) inhibitors.
Bioorg Med Chem Lett. 2014 Jun 1;24(11):2448-52. doi: 10.1016/j.bmcl.2014.04.023. Epub 2014 Apr 16.
6
Discovery of 3-morpholino-imidazole[1,5-a]pyrazine BTK inhibitors for rheumatoid arthritis.
Bioorg Med Chem Lett. 2017 Aug 15;27(16):3939-3943. doi: 10.1016/j.bmcl.2017.03.040. Epub 2017 Mar 18.
7
Recent advances in the discovery of small molecule c-Met Kinase inhibitors.
Eur J Med Chem. 2018 Jan 1;143:1103-1138. doi: 10.1016/j.ejmech.2017.08.044. Epub 2017 Aug 24.
9
FDA-approved small-molecule kinase inhibitors.
Trends Pharmacol Sci. 2015 Jul;36(7):422-39. doi: 10.1016/j.tips.2015.04.005. Epub 2015 May 12.
10
Pharmacophore modeling study based on known spleen tyrosine kinase inhibitors together with virtual screening for identifying novel inhibitors.
Bioorg Med Chem Lett. 2009 Apr 1;19(7):1944-9. doi: 10.1016/j.bmcl.2009.02.049. Epub 2009 Feb 20.

引用本文的文献

2
Optimization Of Cancer Treatment Through Overcoming Drug Resistance.
J Cancer Res Oncobiol. 2018;1(2). doi: 10.31021/jcro.20181107. Epub 2018 Feb 27.

本文引用的文献

1
Best Practices for QSAR Model Development, Validation, and Exploitation.
Mol Inform. 2010 Jul 12;29(6-7):476-88. doi: 10.1002/minf.201000061. Epub 2010 Jul 6.
2
Trials to Overcome Drug Resistance to EGFR and ALK Targeted Therapies - Past, Present, and Future.
Front Oncol. 2014 Aug 27;4:233. doi: 10.3389/fonc.2014.00233. eCollection 2014.
3
Molecular modeling of exquisitely selective c-Met inhibitors through 3D-QSAR and molecular dynamics simulations.
J Chem Inf Model. 2014 Sep 22;54(9):2544-54. doi: 10.1021/ci500268s. Epub 2014 Sep 9.
5
In silico identification of EGFR-T790M inhibitors with novel scaffolds: start with extraction of common features.
Drug Des Devel Ther. 2013 Aug 14;7:789-839. doi: 10.2147/DDDT.S41305. eCollection 2013.
6
Pharmacophore based 3D-QSAR modeling and free energy analysis of VEGFR-2 inhibitors.
J Enzyme Inhib Med Chem. 2013 Dec;28(6):1236-46. doi: 10.3109/14756366.2012.729826. Epub 2012 Oct 15.
7
Effects of cancer-associated EPHA3 mutations on lung cancer.
J Natl Cancer Inst. 2012 Aug 8;104(15):1182-97. doi: 10.1093/jnci/djs297. Epub 2012 Jul 24.
8
3D QSAR pharmacophore modeling for c-Met kinase inhibitors.
Med Chem. 2012 Nov;8(6):1117-25. doi: 10.2174/1573406411208061117.
9
Machine learning methods for property prediction in chemoinformatics: Quo Vadis?
J Chem Inf Model. 2012 Jun 25;52(6):1413-37. doi: 10.1021/ci200409x. Epub 2012 May 25.
10
Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors.
J Mol Model. 2012 Jul;18(7):3087-100. doi: 10.1007/s00894-011-1328-5. Epub 2011 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验