Schrödinger GmbH, Dynamostrasse 13, 68165 Mannheim, Baden-Württemberg, Germany.
Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States.
J Chem Inf Model. 2015 Nov 23;55(11):2411-20. doi: 10.1021/acs.jcim.5b00538. Epub 2015 Oct 21.
Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.
预测蛋白质 - 配体结合自由能是计算结构为基础的药物设计(SBDD)的核心目标 - 提高结合自由能预测的准确性可以显著降低成本并加速先导发现和优化项目的时间。先进的自由能计算方法的最新发展和验证代表了朝着这一目标迈出的重要一步。准确预测配体修饰的相对结合自由能变化在基于片段的药物设计领域特别有价值,因为片段筛选往往会提供初始结合亲和力较低的初始命中,这些命中需要经过多轮合成才能获得项目所需的效力。在这项研究中,我们表明,以前在药物样先导化合物上验证过的自由能微扰(FEP+)协议也适用于片段大小化合物相对结合强度的计算。我们研究了几个具有超过 90 个片段的药物相关靶点,发现 FEP+方法(使用显式溶剂分子动力学和基于物理的打分,无需调整参数)可以准确预测相对片段结合亲和力。与实验数据相比,计算平均得到的 R(2)值大于 0.5,总体 RMS 误差约为 1.1 kcal/mol,这表明与本工作中测试的对接和 MM-GBSA 方法相比有显著改进,并表明 FEP+具有必要的预测能力来影响基于片段的亲和力优化项目。