Suppr超能文献

研究Pin1中的动态结构域间变构作用

Investigating Dynamic Interdomain Allostery in Pin1.

作者信息

Peng Jeffrey W

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556.

出版信息

Biophys Rev. 2015 Jun 1;7(2):239-249. doi: 10.1007/s12551-015-0171-9. Epub 2015 Apr 22.

Abstract

Signaling proteins often sequester complementary functional sites in separate domains. How do the different domains communicate with one another? An attractive system to address this question is the mitotic regulator, human Pin1 (Lu et al. 1996). Pin-1 consists of two tethered domains: a WW domain for substrate binding, and a catalytic domain for peptidyl-prolyl isomerase (PPIase) activity. Pin1 accelerates the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs within proteins regulating the cell cycle and neuronal development. The early x-ray (Ranganathan et al. 1997; Verdecia et al. 2000) and solution NMR studies (Bayer et al. 2003; Jacobs et al. 2003) of Pin1 indicated inter- and intradomain motion. We became interested in exploring how such motions might affect interdomain communication, using NMR. Our accumulated results indicate substrate binding to Pin1 WW domain changes the intra/inter domain mobility, thereby altering substrate activity in the distal PPIase domain catalytic site. Thus, Pin1 shows evidence of dynamic allostery, in the sense of Cooper and Dryden (Cooper and Dryden 1984). We highlight our results supporting this conclusion, and summarize them via a simple speculative model of conformational selection.

摘要

信号蛋白通常在不同结构域中隔离互补的功能位点。不同结构域之间是如何相互通信的呢?解决这个问题的一个引人注目的系统是有丝分裂调节因子人源Pin1(Lu等人,1996年)。Pin1由两个相连的结构域组成:一个用于底物结合的WW结构域和一个具有肽基脯氨酰异构酶(PPIase)活性的催化结构域。Pin1加速调节细胞周期和神经元发育的蛋白质中磷酸化丝氨酸/苏氨酸 - 脯氨酸(pS/T - P)基序的顺反异构化。早期对Pin1的X射线研究(Ranganathan等人,1997年;Verdecia等人,2000年)和溶液核磁共振研究(Bayer等人,2003年;Jacobs等人,2003年)表明了结构域间和结构域内的运动。我们开始对利用核磁共振探索这种运动如何影响结构域间通信感兴趣。我们积累的结果表明,底物与Pin1的WW结构域结合会改变结构域内/结构域间的流动性,从而改变远端PPIase结构域催化位点的底物活性。因此,从库珀和德莱登(Cooper和Dryden,1984年)的意义上来说,Pin1显示出动态变构的证据。我们强调支持这一结论的结果,并通过一个简单的构象选择推测模型对其进行总结。

相似文献

1
Investigating Dynamic Interdomain Allostery in Pin1.
Biophys Rev. 2015 Jun 1;7(2):239-249. doi: 10.1007/s12551-015-0171-9. Epub 2015 Apr 22.
2
Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1.
Front Oncol. 2018 Oct 25;8:469. doi: 10.3389/fonc.2018.00469. eCollection 2018.
3
Coupled intra- and interdomain dynamics support domain cross-talk in Pin1.
J Biol Chem. 2020 Dec 4;295(49):16585-16603. doi: 10.1074/jbc.RA120.015849. Epub 2020 Sep 22.
4
Peptide binding induces large scale changes in inter-domain mobility in human Pin1.
J Biol Chem. 2003 Jul 11;278(28):26174-82. doi: 10.1074/jbc.M300796200. Epub 2003 Apr 9.
6
Negative Regulation of Peptidyl-Prolyl Isomerase Activity by Interdomain Contact in Human Pin1.
Structure. 2015 Dec 1;23(12):2224-2233. doi: 10.1016/j.str.2015.08.019. Epub 2015 Oct 22.
7
Interdomain interactions support interdomain communication in human Pin1.
Biochemistry. 2013 Oct 8;52(40):6968-81. doi: 10.1021/bi401057x. Epub 2013 Sep 24.
8
Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding.
Front Physiol. 2013 Feb 13;4:18. doi: 10.3389/fphys.2013.00018. eCollection 2013.
9
Uncorrelated Effect of Interdomain Contact on Pin1 Isomerase Activity Reveals Positive Catalytic Cooperativity.
J Phys Chem Lett. 2019 Mar 21;10(6):1272-1278. doi: 10.1021/acs.jpclett.9b00052. Epub 2019 Mar 6.
10
Substrate Sequence Determines Catalytic Activities, Domain-Binding Preferences, and Allosteric Mechanisms in Pin1.
J Phys Chem B. 2018 Jun 28;122(25):6521-6527. doi: 10.1021/acs.jpcb.8b03819. Epub 2018 Jun 13.

引用本文的文献

1
A tethering mechanism underlies Pin1-catalyzed proline isomerization at a noncanonical site.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2414606122. doi: 10.1073/pnas.2414606122. Epub 2025 May 19.
2
Dynamic Allostery: Evolution's Double-Edged Sword in Protein Function and Disease.
J Mol Biol. 2025 Apr 24:169175. doi: 10.1016/j.jmb.2025.169175.
4
Pin1 WW Domain Ligand Library Synthesized with an Easy Solid-Phase Phosphorylating Reagent.
Biochemistry. 2024 Nov 5;63(21):2803-2815. doi: 10.1021/acs.biochem.4c00231. Epub 2024 Oct 8.
5
Navigating the complexity of p53-DNA binding: implications for cancer therapy.
Biophys Rev. 2024 Jul 11;16(4):479-496. doi: 10.1007/s12551-024-01207-4. eCollection 2024 Aug.
6
A tethering mechanism underlies Pin1-catalyzed proline isomerization at a noncanonical site.
bioRxiv. 2025 Mar 22:2024.07.19.604348. doi: 10.1101/2024.07.19.604348.
8
Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase.
Adv Biol Regul. 2023 Jan;87:100938. doi: 10.1016/j.jbior.2022.100938. Epub 2022 Nov 30.
9
Atomic resolution protein allostery from the multi-state structure of a PDZ domain.
Nat Commun. 2022 Oct 20;13(1):6232. doi: 10.1038/s41467-022-33687-x.
10
Advances in the exact nuclear Overhauser effect 2018-2022.
Methods. 2022 Oct;206:87-98. doi: 10.1016/j.ymeth.2022.08.006. Epub 2022 Aug 17.

本文引用的文献

1
Two pathways mediate interdomain allosteric regulation in pin1.
Structure. 2015 Jan 6;23(1):237-247. doi: 10.1016/j.str.2014.11.009. Epub 2014 Dec 24.
2
Evolution of oligomeric state through allosteric pathways that mimic ligand binding.
Science. 2014 Dec 19;346(6216):1254346. doi: 10.1126/science.1254346.
3
Action at a distance: allostery and the development of drugs to target cancer cell metabolism.
Chem Biol. 2014 Sep 18;21(9):1143-61. doi: 10.1016/j.chembiol.2014.08.007.
4
A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases.
Methods Enzymol. 2014;544:215-49. doi: 10.1016/B978-0-12-417158-9.00009-1.
5
Classification of intrinsically disordered regions and proteins.
Chem Rev. 2014 Jul 9;114(13):6589-631. doi: 10.1021/cr400525m. Epub 2014 Apr 29.
6
Interdomain interactions support interdomain communication in human Pin1.
Biochemistry. 2013 Oct 8;52(40):6968-81. doi: 10.1021/bi401057x. Epub 2013 Sep 24.
7
Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands.
Structure. 2013 Oct 8;21(10):1769-77. doi: 10.1016/j.str.2013.07.016. Epub 2013 Aug 22.
8
Pin1 promotes GR transactivation by enhancing recruitment to target genes.
Nucleic Acids Res. 2013 Oct;41(18):8515-25. doi: 10.1093/nar/gkt624. Epub 2013 Jul 25.
9
Allosteric communication in the KIX domain proceeds through dynamic repacking of the hydrophobic core.
ACS Chem Biol. 2013 Jul 19;8(7):1600-10. doi: 10.1021/cb4002188. Epub 2013 May 20.
10
Allosteric inhibition through suppression of transient conformational states.
Nat Chem Biol. 2013 Jul;9(7):462-5. doi: 10.1038/nchembio.1250. Epub 2013 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验