Suppr超能文献

利用3D棕色脂肪生成技术制造“微丝束棕色脂肪”

3D brown adipogenesis to create "Brown-Fat-in-Microstrands".

作者信息

Unser Andrea M, Mooney Bridget, Corr David T, Tseng Yu-Hua, Xie Yubing

机构信息

Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.

出版信息

Biomaterials. 2016 Jan;75:123-134. doi: 10.1016/j.biomaterials.2015.10.017. Epub 2015 Oct 8.

Abstract

The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. In addition, three-dimensional (3D) cell culture systems are needed to better understand the role of brown adipocytes in energy balance and treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells, and brown preadipocytes as a positive control. Brown adipocyte differentiation within microstrands was confirmed by immunocytochemistry and qPCR analysis of the expression of the brown adipocyte-defining marker uncoupling protein 1 (UCP1), as well as other general adipocyte markers. Cells within microstrands were responsive to a β-adrenergic agonist with an increase in gene expression of thermogenic UCP1, indicating that these "Brown-Fat-in-Microstrands" are functional. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

摘要

棕色脂肪细胞(脂肪细胞)将能量以热量形式散发的能力,对于治疗肥胖症和其他代谢紊乱显示出巨大潜力。利用多能干细胞,重点是定向分化,可能会克服目前与原代脂肪细胞培养相关的许多问题。此外,需要三维(3D)细胞培养系统来更好地理解棕色脂肪细胞在能量平衡和治疗肥胖症中的作用。为满足这一需求,我们通过微流控合成藻酸盐水凝胶微丝创建了3D“微丝中的棕色脂肪”,该微丝包裹细胞并直接诱导细胞分化为棕色脂肪细胞,使用小鼠胚胎干细胞(ESCs)作为多能干细胞模型,棕色前脂肪细胞作为阳性对照。通过免疫细胞化学和对棕色脂肪细胞定义标志物解偶联蛋白1(UCP1)以及其他一般脂肪细胞标志物表达的qPCR分析,证实了微丝内棕色脂肪细胞的分化。微丝内的细胞对β-肾上腺素能激动剂有反应,产热UCP1的基因表达增加,表明这些“微丝中的棕色脂肪”具有功能。从多能干细胞创建“微丝中的棕色脂肪”的能力,为理解棕色脂肪生成及其在肥胖症和代谢紊乱中的影响开辟了一个新领域。

相似文献

1
3D brown adipogenesis to create "Brown-Fat-in-Microstrands".
Biomaterials. 2016 Jan;75:123-134. doi: 10.1016/j.biomaterials.2015.10.017. Epub 2015 Oct 8.
2
3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.
Acta Biomater. 2017 Feb;49:329-343. doi: 10.1016/j.actbio.2016.11.016. Epub 2016 Nov 5.
3
Opportunities and challenges in three-dimensional brown adipogenesis of stem cells.
Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):962-79. doi: 10.1016/j.biotechadv.2015.07.005. Epub 2015 Jul 29.
4
One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands.
Biomaterials. 2011 Jul;32(20):4498-505. doi: 10.1016/j.biomaterials.2011.03.011. Epub 2011 Apr 2.
5
MiR-27 orchestrates the transcriptional regulation of brown adipogenesis.
Metabolism. 2014 Feb;63(2):272-82. doi: 10.1016/j.metabol.2013.10.004. Epub 2013 Oct 24.
6
Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes.
Am J Physiol Endocrinol Metab. 2014 Feb 15;306(4):E363-72. doi: 10.1152/ajpendo.00119.2013. Epub 2013 Dec 17.
7
Modifying alginate with early embryonic extracellular matrix, laminin, and hyaluronic acid for adipose tissue engineering.
J Biomed Mater Res A. 2016 Mar;104(3):669-677. doi: 10.1002/jbm.a.35606. Epub 2015 Nov 14.
8
[Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells].
Zhonghua Kou Qiang Yi Xue Za Zhi. 2017 Apr 9;52(4):259-264. doi: 10.3760/cma.j.issn.1002-0098.2017.04.013.

引用本文的文献

2
Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance.
Bioengineering (Basel). 2024 Apr 13;11(4):375. doi: 10.3390/bioengineering11040375.
3
Unleashing the potential of adipose organoids: A revolutionary approach to combat obesity-related metabolic diseases.
Theranostics. 2024 Feb 25;14(5):2075-2098. doi: 10.7150/thno.93919. eCollection 2024.
4
Purinergic receptor: a crucial regulator of adipose tissue functions.
Purinergic Signal. 2023 Mar;19(1):273-281. doi: 10.1007/s11302-022-09907-w. Epub 2022 Dec 14.
5
Alginate microfibers as therapeutic delivery scaffolds and tissue mimics.
Exp Biol Med (Maywood). 2022 Dec;247(23):2103-2118. doi: 10.1177/15353702221112905. Epub 2022 Aug 23.
6
Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications.
Adv Healthc Mater. 2022 Aug;11(16):e2200846. doi: 10.1002/adhm.202200846. Epub 2022 Jun 23.
7
Harnessing adipose stem cell diversity in regenerative medicine.
APL Bioeng. 2021 Apr 1;5(2):021501. doi: 10.1063/5.0038101. eCollection 2021 Jun.
8
Studying Brown Adipose Tissue in a Human Context.
Front Endocrinol (Lausanne). 2020 Sep 15;11:629. doi: 10.3389/fendo.2020.00629. eCollection 2020.
9
Human Adipose Derived Cells in Two- and Three-Dimensional Cultures: Functional Validation of an In Vitro Fat Construct.
Stem Cells Int. 2020 Jun 10;2020:4242130. doi: 10.1155/2020/4242130. eCollection 2020.

本文引用的文献

1
Alginate-Based Biomaterials for Regenerative Medicine Applications.
Materials (Basel). 2013 Mar 26;6(4):1285-1309. doi: 10.3390/ma6041285.
2
Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.
PLoS One. 2015 Mar 3;10(3):e0119010. doi: 10.1371/journal.pone.0119010. eCollection 2015.
3
Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques.
Adv Funct Mater. 2014 Jul 9;24(26):4060-4067. doi: 10.1002/adfm.201303655.
4
5
The different shades of fat.
Nature. 2014 Jun 5;510(7503):76-83. doi: 10.1038/nature13477.
6
Necrotic regions are absent in fiber-shaped cell aggregates, approximately 100 μm in diameter.
Artif Cells Nanomed Biotechnol. 2016;44(1):62-5. doi: 10.3109/21691401.2014.909824. Epub 2014 May 9.
8
Cell physiology: The changing colour of fat.
Nature. 2014 Apr 17;508(7496):S52-3. doi: 10.1038/508S52a.
9
Differentiation of white and brown adipocytes from human pluripotent stem cells.
Methods Enzymol. 2014;538:35-47. doi: 10.1016/B978-0-12-800280-3.00003-7.
10
Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans.
Cell Metab. 2014 Feb 4;19(2):302-9. doi: 10.1016/j.cmet.2013.12.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验