Fiore Gianfranco, Perrino Giansimone, di Bernardo Mario, di Bernardo Diego
TeleThon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy.
Department of Electrical Engineering and Information Technology, University of Naples Federico II , 80125 Naples, Italy.
ACS Synth Biol. 2016 Feb 19;5(2):154-62. doi: 10.1021/acssynbio.5b00135. Epub 2015 Dec 4.
Real-time automatic regulation of gene expression is a key technology for synthetic biology enabling, for example, synthetic circuit's components to operate in an optimal range. Computer-guided control of gene expression from a variety of inducible promoters has been only recently successfully demonstrated. Here we compared, in silico and in vivo, three different control algorithms: the Proportional-Integral (PI) and Model Predictive Control (MPC) controllers, which have already been used to control gene expression, and the Zero Average Dynamics (ZAD), a control technique used to regulate electrical power systems. We chose as an experimental testbed the most commonly used inducible promoter in yeast: the galactose-responsive GAL1 promoter. We set two control tasks: either force cells to express a desired constant fluorescence level of a reporter protein downstream of the GAL1 promoter (set-point) or a time-varying fluorescence (tracking). Using a microfluidics-based experimental platform, in which either glucose or galactose can be provided to the cells, we demonstrated that both the MPC and ZAD control strategies can successfully regulate gene expression from the GAL1 promoter in living cells for thousands of minutes. The MPC controller can track fast reference signals better than ZAD but with a higher actuation effort due to the large number of input switches it requires. Conversely, the PI controller's performance is comparable to that achieved by the MPC and the ZAD controllers only for the set-point regulation.
基因表达的实时自动调控是合成生物学的一项关键技术,比如能使合成回路的组件在最佳范围内运行。直到最近才成功证明了对来自多种诱导型启动子的基因表达进行计算机引导控制。在这里,我们在计算机模拟和体内实验中比较了三种不同的控制算法:已经用于控制基因表达的比例积分(PI)控制器和模型预测控制(MPC)控制器,以及一种用于调节电力系统的控制技术——零平均动态(ZAD)。我们选择了酵母中最常用的诱导型启动子——半乳糖响应型GAL1启动子作为实验测试平台。我们设定了两个控制任务:要么迫使细胞在GAL1启动子下游表达报告蛋白的期望恒定荧光水平(设定值),要么表达随时间变化的荧光(跟踪)。使用基于微流控的实验平台,在该平台中可以向细胞提供葡萄糖或半乳糖,我们证明了MPC和ZAD控制策略都能在活细胞中成功调控GAL1启动子的基因表达长达数千分钟。MPC控制器比ZAD能更好地跟踪快速参考信号,但由于需要大量的输入切换,其驱动工作量更大。相反,PI控制器的性能仅在设定值调节方面与MPC和ZAD控制器相当。