Suppr超能文献

构建活体毛细血管网络与内皮细胞衬里微流控通道之间的吻合。

Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

作者信息

Wang Xiaolin, Phan Duc T T, Sobrino Agua, George Steven C, Hughes Christopher C W, Lee Abraham P

机构信息

Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.

Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.

出版信息

Lab Chip. 2016 Jan 21;16(2):282-90. doi: 10.1039/c5lc01050k.

Abstract

This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.

摘要

本文报道了一种生成完整且可灌注的微血管网络的方法,该网络可连接至微流控通道且无明显渗漏。该平台按顺序纳入了血管发育的不同阶段,包括血管生成、内皮细胞(EC)内衬、芽生血管生成和吻合。通过血管生成在组织腔内形成毛细血管网络后,相邻的微流控通道内衬单层EC,这些EC随后充当高压输入(“动脉”)和低压输出(“静脉”)管道。为促进动脉/静脉与毛细血管网络之间的紧密互连,诱导芽生血管生成,这促进了组织腔内的脉管系统与沿微流控通道的EC内衬之间的吻合。荧光微粒的流动证实了内腔化微血管网络的可灌注性,70 kDa FITC-葡聚糖的最小渗漏证实了EC连接的生理紧密性以及动脉/静脉与毛细血管网络之间连接的完整性。这种通用的设备设计及其强大的构建方法建立了从动脉到血管化组织再到静脉的相互连接的灌注血管的生理运输模型。该系统在广泛的芯片器官应用中具有实用性,因为它能够实现多个芯片上组织构建体的生理血管互连,这些构建体可作为药物筛选的疾病模型。

相似文献

3
Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a.
4
Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network.
PLoS One. 2015 Jul 23;10(7):e0133880. doi: 10.1371/journal.pone.0133880. eCollection 2015.
5
Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels.
Tissue Eng Part A. 2015 Aug;21(15-16):2166-76. doi: 10.1089/ten.TEA.2014.0545. Epub 2015 May 29.
6
A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks.
Microsyst Nanoeng. 2021 Jan 6;7:4. doi: 10.1038/s41378-020-00229-8. eCollection 2021.
8
Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis.
Integr Biol (Camb). 2012 Aug;4(8):857-62. doi: 10.1039/c2ib20061a. Epub 2012 Jun 6.
9
Control of perfusable microvascular network morphology using a multiculture microfluidic system.
Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13.

引用本文的文献

1
Advances in human organs-on-chips and applications for drug screening and personalized medicine.
Fundam Res. 2024 Feb 22;5(3):1258-1272. doi: 10.1016/j.fmre.2023.12.019. eCollection 2025 May.
2
Endocrine cancer organoids in basic and translational medical research.
Sci China Life Sci. 2025 Jun 5. doi: 10.1007/s11427-024-2888-8.
4
Cancer-on-a-chip for precision cancer medicine.
Lab Chip. 2025 May 16. doi: 10.1039/d4lc01043d.
5
Engineered Endometrial Clear Cell Cancer-on-a-Chip Reveals Early Invasion-Metastasis Cascade of Cancer Cells.
Biomater Res. 2025 Apr 14;29:0177. doi: 10.34133/bmr.0177. eCollection 2025.
6
Enhancing Viability in Static and Perfused 3D Tissue Constructs Using Sacrificial Gelatin Microparticles.
ACS Biomater Sci Eng. 2025 May 12;11(5):2888-2897. doi: 10.1021/acsbiomaterials.4c02169. Epub 2025 Apr 7.
7
A Vascularized Multilayer Chip Reveals Shear Stress-Induced Angiogenesis in Diverse Fluid Conditions.
Cyborg Bionic Syst. 2025 Feb 28;6:0207. doi: 10.34133/cbsystems.0207. eCollection 2025.
8
Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases.
Mater Today Bio. 2024 Dec 9;30:101396. doi: 10.1016/j.mtbio.2024.101396. eCollection 2025 Feb.
9
Adaptable Manufacturing and Biofabrication of Milliscale Organ Chips With Perfusable Vascular Beds.
Biotechnol J. 2024 Dec;19(12):e202400550. doi: 10.1002/biot.202400550.
10
Microfluidic Modulation of Microvasculature in Microdissected Tumors.
bioRxiv. 2024 Oct 7:2024.09.26.615278. doi: 10.1101/2024.09.26.615278.

本文引用的文献

1
Endothelial cell dynamics during anastomosis in vitro.
Integr Biol (Camb). 2015 Apr;7(4):454-66. doi: 10.1039/c5ib00052a.
2
Microfluidic organs-on-chips.
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.
3
Microfluidic techniques for development of 3D vascularized tissue.
Biomaterials. 2014 Aug;35(26):7308-25. doi: 10.1016/j.biomaterials.2014.04.091. Epub 2014 Jun 3.
6
A bioengineered array of 3D microvessels for vascular permeability assay.
Microvasc Res. 2014 Jan;91:90-8. doi: 10.1016/j.mvr.2013.12.001. Epub 2013 Dec 12.
7
Accelerating drug discovery via organs-on-chips.
Lab Chip. 2013 Dec 21;13(24):4697-710. doi: 10.1039/c3lc90115g.
8
Control of perfusable microvascular network morphology using a multiculture microfluidic system.
Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13.
9
Advances in microfluidic cell culture systems for studying angiogenesis.
J Lab Autom. 2013 Dec;18(6):427-36. doi: 10.1177/2211068213495206. Epub 2013 Jul 5.
10
Integrating biological vasculature into a multi-organ-chip microsystem.
Lab Chip. 2013 Sep 21;13(18):3588-98. doi: 10.1039/c3lc50217a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验