O'Connor James P B, Boult Jessica K R, Jamin Yann, Babur Muhammad, Finegan Katherine G, Williams Kaye J, Little Ross A, Jackson Alan, Parker Geoff J M, Reynolds Andrew R, Waterton John C, Robinson Simon P
Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom. Department of Radiology, Christie NHS Foundation Trust, Manchester, United Kingdom. james.o'
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
Cancer Res. 2016 Feb 15;76(4):787-95. doi: 10.1158/0008-5472.CAN-15-2062. Epub 2015 Dec 9.
There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.
对于肿瘤缺氧的非侵入性生物标志物,在预后和预测研究、放射治疗计划制定以及治疗监测方面存在临床需求。氧增强磁共振成像(OE-MRI)是一种新兴的成像技术,用于在体内定量肿瘤氧输送的空间分布和范围。在OE-MRI中,质子的纵向弛豫率(ΔR1)与溶解在血浆或间质组织液中的分子氧浓度成比例变化。因此,氧合良好的组织显示出正的ΔR1。我们假设,在具有不同血管和缺氧特征的模型中,对氧挑战无反应的肿瘤组织部分(缺乏正的ΔR1,称为“Oxy-R部分”)将是缺氧的可靠生物标志物。在此,我们证明在高血管化的786-0肾癌异种移植模型中,OE-MRI信号对肿瘤pO2的变化准确、精确且敏感。此外,我们表明,当与肿瘤灌注测量结合使用时,Oxy-R部分可以在具有不同缺氧和血管表型的多个模型中量化缺氧部分。最后,Oxy-R部分可以检测由血管调节剂肼屈嗪诱导的缺氧动态变化。相比之下,更传统的缺氧生物标志物(源自血氧水平依赖磁共振成像和动态对比增强磁共振成像)与肿瘤缺氧的相关性并不一致。我们的结果表明,Oxy-R部分能够准确地无创量化肿瘤缺氧,并且可立即应用于临床。