Zhang Tian, Zheng Yunzhen, Cosgrove Daniel J
Department of Biology and Center for Lignocellulose Structure and Formation, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
Plant J. 2016 Jan;85(2):179-92. doi: 10.1111/tpj.13102.
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions.
我们使用原子力显微镜(AFM)并辅以电子显微镜,来表征洋葱鳞片表皮外(平周)细胞壁的纳米级和中尺度结构——这是一个将细胞壁结构与细胞壁力学联系起来的模型系统。表皮细胞壁包含约100个片层,每个片层约40纳米厚,含有3.5纳米宽的纤维素微纤丝,这些微纤丝在一个片层内沿共同方向排列,但相邻片层之间相差约30至90°。因此,细胞壁具有交叉多片层结构,而非螺旋结构。新沉积的细胞壁表面的高分辨率AFM图像蒙太奇显示,单个微纤丝融入和脱离微纤丝束的短区域,从而形成网状网络。片层内微纤丝的方向在整个细胞表面不会逐渐或突然改变,这表明片层在外壁上是连续的。当通过场发射扫描电子显微镜(FESEM)成像时,细胞壁表面的一层果胶会掩盖下面的纤维素微纤丝,但AFM不会。因此,AFM通过探测这些水合细胞壁中的软基质,优先检测到纤维素微纤丝。基于AFM的纳米力学图谱揭示了细胞壁在纳米尺度上刚度和粘附性的显著异质性。通过对这些图谱进行颜色编码和合并,可以在更硬的微纤丝背景下可视化软质和硬质基质聚合物的空间分布。无需化学提取和脱水,我们的结果提供了原生状态下初级细胞壁的多尺度结构细节,这对单轴和双轴伸展过程中不同片层中微纤丝的运动具有启示意义。