Suppr超能文献

轴突导向分子与脊髓损伤后的神经回路重塑

Axon Guidance Molecules and Neural Circuit Remodeling After Spinal Cord Injury.

作者信息

Hollis Edmund R

机构信息

Burke Medical Research Institute, White Plains, NY, USA.

Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.

出版信息

Neurotherapeutics. 2016 Apr;13(2):360-9. doi: 10.1007/s13311-015-0416-0.

Abstract

…once the development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. Santiago Ramón y Cajal Cajal's neurotropic theory postulates that the complexity of the nervous system arises from the collaboration of neurotropic signals from neuronal and non-neuronal cells and that once development has ended, a paucity of neurotropic signals means that the pathways of the central nervous system are "fixed, ended, immutable". While the capacity for regeneration and plasticity of the central nervous system may not be quite as paltry as Cajal proposed, regeneration is severely limited in scope as there is no spontaneous regeneration of long-distance projections in mammals and therefore limited opportunity for functional recovery following spinal cord injury. It is not a far stretch from Cajal to hypothesize that reappropriation of the neurotropic programs of development may be an appropriate strategy for reconstitution of injured circuits. It has become clear, however, that a significant number of the molecular cues governing circuit development become re-active after injury and many assume roles that paradoxically obstruct the functional re-wiring of severed neural connections. Therefore, the problem to address is how individual neural circuits respond to specific molecular cues following injury, and what strategies will be necessary for instigating functional repair or remodeling of the injured spinal cord.

摘要

一旦发育结束,轴突和树突的生长及再生源泉便不可逆转地干涸了。圣地亚哥·拉蒙·伊·卡哈尔的神经营养理论假定,神经系统的复杂性源于神经元和非神经元细胞神经营养信号的协同作用,并且一旦发育结束,神经营养信号的匮乏意味着中枢神经系统的通路是“固定的、终结的、不可改变的”。虽然中枢神经系统的再生和可塑性能力可能不像卡哈尔所提出的那样微不足道,但由于哺乳动物中不存在长距离投射的自发再生,因此再生的范围受到严重限制,脊髓损伤后功能恢复的机会也有限。从卡哈尔的观点不难推测,重新利用发育中的神经营养程序可能是重建受损回路的一种合适策略。然而,已经清楚的是,许多控制回路发育的分子信号在损伤后会重新激活,而且许多信号会起到矛盾地阻碍切断的神经连接功能重新布线的作用。因此,要解决的问题是单个神经回路在损伤后如何对特定的分子信号作出反应,以及促进受损脊髓功能修复或重塑需要哪些策略。

相似文献

1
Axon Guidance Molecules and Neural Circuit Remodeling After Spinal Cord Injury.
Neurotherapeutics. 2016 Apr;13(2):360-9. doi: 10.1007/s13311-015-0416-0.
2
Role of Axon Guidance Molecules in Ascending and Descending Paths in Spinal Cord Regeneration.
Neuroscience. 2023 Nov 21;533:36-52. doi: 10.1016/j.neuroscience.2023.08.034. Epub 2023 Sep 11.
3
Targeting axon guidance cues for neural circuit repair after spinal cord injury.
J Cereb Blood Flow Metab. 2021 Feb;41(2):197-205. doi: 10.1177/0271678X20961852. Epub 2020 Nov 9.
4
Neuroplasticity in Alzheimer's disease.
J Neurosci Res. 2002 Nov 1;70(3):402-37. doi: 10.1002/jnr.10441.
6
Respiratory axon regeneration in the chronically injured spinal cord.
Neurobiol Dis. 2021 Jul;155:105389. doi: 10.1016/j.nbd.2021.105389. Epub 2021 May 8.
7
Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway.
J Neurosci. 2020 Jul 8;40(28):5402-5412. doi: 10.1523/JNEUROSCI.3190-18.2020. Epub 2020 May 29.
8
Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury.
Exp Neurol. 2021 Nov;345:113839. doi: 10.1016/j.expneurol.2021.113839. Epub 2021 Aug 10.
9
Olig2-Induced Semaphorin Expression Drives Corticospinal Axon Retraction After Spinal Cord Injury.
Cereb Cortex. 2020 Oct 1;30(11):5702-5716. doi: 10.1093/cercor/bhaa142.
10
Chemorepellent axon guidance molecules in spinal cord injury.
J Neurotrauma. 2006 Mar-Apr;23(3-4):409-21. doi: 10.1089/neu.2006.23.409.

引用本文的文献

2
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.
Front Neural Circuits. 2025 Mar 21;19:1566562. doi: 10.3389/fncir.2025.1566562. eCollection 2025.
3
Neuronal maturation and axon regeneration: unfixing circuitry to enable repair.
Nat Rev Neurosci. 2024 Oct;25(10):649-667. doi: 10.1038/s41583-024-00849-3. Epub 2024 Aug 20.
4
Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation.
Neural Regen Res. 2023 Dec;18(12):2573-2581. doi: 10.4103/1673-5374.373674.
6
Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons.
Neurosci Bull. 2023 May;39(5):745-758. doi: 10.1007/s12264-022-01011-8. Epub 2023 Jan 1.
9
Effects of Wnt5a overexpression in spinal cord injury.
J Cell Mol Med. 2021 Jun;25(11):5150-5163. doi: 10.1111/jcmm.16507. Epub 2021 May 3.
10
Transplanting neural progenitor cells to restore connectivity after spinal cord injury.
Nat Rev Neurosci. 2020 Jul;21(7):366-383. doi: 10.1038/s41583-020-0314-2. Epub 2020 Jun 9.

本文引用的文献

1
Use of peripheral nerve transfers in tetraplegia: evaluation of feasibility and morbidity.
Hand (N Y). 2015 Mar;10(1):60-7. doi: 10.1007/s11552-014-9677-z.
3
A perspective on the role of class III semaphorin signaling in central nervous system trauma.
Front Cell Neurosci. 2014 Oct 27;8:328. doi: 10.3389/fncel.2014.00328. eCollection 2014.
5
Towards an understanding of semaphorin signalling in the spinal cord.
Gene. 2014 Dec 15;553(2):69-74. doi: 10.1016/j.gene.2014.10.005. Epub 2014 Oct 7.
6
Axon guidance and injury-lessons from Wnts and Wnt signaling.
Curr Opin Neurobiol. 2014 Aug;27:232-40. doi: 10.1016/j.conb.2014.05.005. Epub 2014 Jun 11.
8
Ephrin signalling in the developing nervous system.
Curr Opin Neurobiol. 2014 Aug;27:16-24. doi: 10.1016/j.conb.2014.02.006. Epub 2014 Mar 7.
9
Semaphorins and the dynamic regulation of synapse assembly, refinement, and function.
Curr Opin Neurobiol. 2014 Aug;27:1-7. doi: 10.1016/j.conb.2014.02.005. Epub 2014 Mar 2.
10
The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin.
Cell Rep. 2014 Mar 13;6(5):916-27. doi: 10.1016/j.celrep.2014.01.044. Epub 2014 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验