Deboeck Pascal R
a University of Kansas.
Multivariate Behav Res. 2010 Aug 6;45(4):725-45. doi: 10.1080/00273171.2010.498294.
The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common approach for estimating derivatives, Local Linear Approximation (LLA), produces estimates with correlated errors. Depending on the specific differential equation model used, such correlated errors can lead to severely biased estimates of differential equation model parameters. This article shows that the fitting of dynamical systems can be improved by estimating derivatives in a manner similar to that used to fit orthogonal polynomials. Two applications using simulated data compare the proposed method and a generalized form of LLA when used to estimate derivatives and when used to estimate differential equation model parameters. A third application estimates the frequency of oscillation in observations of the monthly deaths from bronchitis, emphysema, and asthma in the United Kingdom. These data are publicly available in the statistical program R, and functions in R for the method presented are provided.
将动态系统与心理数据进行拟合,有望解决有关人们如何随时间变化的新的创新性问题。拟合动态系统的一种方法是估计时间序列的导数,然后使用微分方程模型检查导数之间的关系。估计导数的一种常见方法,即局部线性近似(LLA),会产生具有相关误差的估计值。根据所使用的特定微分方程模型,这种相关误差可能会导致微分方程模型参数的严重偏差估计。本文表明,通过以类似于拟合正交多项式的方式估计导数,可以改进动态系统的拟合。使用模拟数据的两个应用比较了所提出的方法和LLA的一种广义形式在用于估计导数以及用于估计微分方程模型参数时的情况。第三个应用估计了英国支气管炎、肺气肿和哮喘月度死亡观察数据中的振荡频率。这些数据在统计软件R中公开可用,并提供了R中用于所提出方法的函数。