Suppr超能文献

损伤描述因果关系自动编码方法的比较

Comparison of methods for auto-coding causation of injury narratives.

作者信息

Bertke S J, Meyers A R, Wurzelbacher S J, Measure A, Lampl M P, Robins D

机构信息

National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Industrywide Studies Branch, 1090 Tusculum Ave, Cincinnati, OH 45226, United States.

National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Industrywide Studies Branch, Center for Workers' Compensation Studies, 1090 Tusculum Ave, Cincinnati, OH 45226, United States.

出版信息

Accid Anal Prev. 2016 Mar;88:117-23. doi: 10.1016/j.aap.2015.12.006. Epub 2015 Dec 30.

Abstract

Manually reading free-text narratives in large databases to identify the cause of an injury can be very time consuming and recently, there has been much work in automating this process. In particular, the variations of the naïve Bayes model have been used to successfully auto-code free text narratives describing the event/exposure leading to the injury of a workers' compensation claim. This paper compares the naïve Bayes model with an alternative logistic model and found that this new model outperformed the naïve Bayesian model. Further modest improvements were found through the addition of sequences of keywords in the models as opposed to consideration of only single keywords. The programs and weights used in this paper are available upon request to researchers without a training set wishing to automatically assign event codes to large data-sets of text narratives. The utility of sharing this program was tested on an outside set of injury narratives provided by the Bureau of Labor Statistics with promising results.

摘要

在大型数据库中人工阅读自由文本叙述以确定受伤原因可能非常耗时,最近,在自动化这一过程方面已经开展了大量工作。特别是,朴素贝叶斯模型的变体已被成功用于对描述导致工伤赔偿申请受伤事件/暴露情况的自由文本叙述进行自动编码。本文将朴素贝叶斯模型与另一种逻辑模型进行了比较,发现这种新模型优于朴素贝叶斯模型。通过在模型中添加关键词序列,而不是仅考虑单个关键词,还发现了进一步的适度改进。本文中使用的程序和权重可应要求提供给希望自动为大型文本叙述数据集分配事件代码且没有训练集的研究人员。在劳工统计局提供的一组外部受伤叙述上测试了共享此程序的效用,结果很有前景。

相似文献

1
Comparison of methods for auto-coding causation of injury narratives.
Accid Anal Prev. 2016 Mar;88:117-23. doi: 10.1016/j.aap.2015.12.006. Epub 2015 Dec 30.
4
Development and evaluation of a Naïve Bayesian model for coding causation of workers' compensation claims.
J Safety Res. 2012 Dec;43(5-6):327-32. doi: 10.1016/j.jsr.2012.10.012. Epub 2012 Nov 1.
5
A combined Fuzzy and Naive Bayesian strategy can be used to assign event codes to injury narratives.
Inj Prev. 2011 Dec;17(6):407-14. doi: 10.1136/ip.2010.030593. Epub 2011 Apr 11.
6
Bayesian methods: a useful tool for classifying injury narratives into cause groups.
Inj Prev. 2009 Aug;15(4):259-65. doi: 10.1136/ip.2008.021337.
7
Near-miss narratives from the fire service: a Bayesian analysis.
Accid Anal Prev. 2014 Jan;62:119-29. doi: 10.1016/j.aap.2013.09.012. Epub 2013 Oct 1.
8
Injury classification agreement in linked Bureau of Labor Statistics and Workers' Compensation data.
Am J Ind Med. 2014 Oct;57(10):1100-9. doi: 10.1002/ajim.22289. Epub 2013 Dec 17.

引用本文的文献

1
Oil and Gas Extraction Industry Workers' Compensation Claims and Proposed Safety Interventions.
J Occup Environ Med. 2024 Aug 1;66(8):635-647. doi: 10.1097/JOM.0000000000003124. Epub 2024 May 1.
3
Construction industry workers' compensation injury claims due to slips, trips, and falls - Ohio, 2010-2017.
J Safety Res. 2023 Sep;86:80-91. doi: 10.1016/j.jsr.2023.06.010. Epub 2023 Jul 19.
4
Establishment-level occupational safety analytics: Challenges and opportunities.
Int J Ind Ergon. 2023 Mar;94. doi: 10.1016/j.ergon.2023.103428.
5
Case Studies of Robots and Automation as Health/Safety Interventions in Small Manufacturing Enterprises.
Hum Factors Ergon Manuf. 2022 Aug;33(1):69-103. doi: 10.1002/hfm.20971.
6
Predicting occupational injury causal factors using text-based analytics: A systematic review.
Front Public Health. 2022 Sep 15;10:984099. doi: 10.3389/fpubh.2022.984099. eCollection 2022.
7
8
Lessons learned from Ohio workers' compensation claims to mitigate hazards in the landscaping services industry.
Am J Ind Med. 2021 Aug;64(8):699-713. doi: 10.1002/ajim.23261. Epub 2021 Jun 2.

本文引用的文献

2
Machine learning approaches to analysing textual injury surveillance data: a systematic review.
Accid Anal Prev. 2015 Jun;79:41-9. doi: 10.1016/j.aap.2015.03.018. Epub 2015 Mar 19.
4
Near-miss narratives from the fire service: a Bayesian analysis.
Accid Anal Prev. 2014 Jan;62:119-29. doi: 10.1016/j.aap.2013.09.012. Epub 2013 Oct 1.
5
Development and evaluation of a Naïve Bayesian model for coding causation of workers' compensation claims.
J Safety Res. 2012 Dec;43(5-6):327-32. doi: 10.1016/j.jsr.2012.10.012. Epub 2012 Nov 1.
6
A combined Fuzzy and Naive Bayesian strategy can be used to assign event codes to injury narratives.
Inj Prev. 2011 Dec;17(6):407-14. doi: 10.1136/ip.2010.030593. Epub 2011 Apr 11.
7
Bayesian methods: a useful tool for classifying injury narratives into cause groups.
Inj Prev. 2009 Aug;15(4):259-65. doi: 10.1136/ip.2008.021337.
8
Computerized coding of injury narrative data from the National Health Interview Survey.
Accid Anal Prev. 2004 Mar;36(2):165-71. doi: 10.1016/s0001-4575(02)00146-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验