Suppr超能文献

pRNAm-PC:通过物理化学性质预测RNA序列中的N6-甲基腺嘌呤位点。

pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties.

作者信息

Liu Zi, Xiao Xuan, Yu Dong-Jun, Jia Jianhua, Qiu Wang-Ren, Chou Kuo-Chen

机构信息

Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen 333403, China; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen 333403, China; Information School, ZheJiang Textile and Fashion College, NingBo 315211, China; Gordon Life Science Institute, Boston, MA 02478, USA.

出版信息

Anal Biochem. 2016 Mar 15;497:60-7. doi: 10.1016/j.ab.2015.12.017. Epub 2015 Dec 31.

Abstract

Just like PTM or PTLM (post-translational modification) in proteins, PTCM (post-transcriptional modification) in RNA plays very important roles in biological processes. Occurring at adenine (A) with the genetic code motif (GAC), N(6)-methyldenosine (m(6)A) is one of the most common and abundant PTCMs in RNA found in viruses and most eukaryotes. Given an uncharacterized RNA sequence containing many GAC motifs, which of them can be methylated, and which cannot? It is important for both basic research and drug development to address this problem. Particularly with the avalanche of RNA sequences generated in the postgenomic age, it is highly demanded to develop computational methods for timely identifying the N(6)-methyldenosine sites in RNA. Here we propose a new predictor called pRNAm-PC, in which RNA sequence samples are expressed by a novel mode of pseudo dinucleotide composition (PseDNC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross covariance transformations. It was observed via a rigorous jackknife test that, in comparison with the existing predictor for the same purpose, pRNAm-PC achieved remarkably higher success rates in both overall accuracy and stability, indicating that the new predictor will become a useful high-throughput tool for identifying methylation sites in RNA, and that the novel approach can also be used to study many other RNA-related problems and conduct genome analysis. A user-friendly Web server for pRNAm-PC has been established at http://www.jci-bioinfo.cn/pRNAm-PC, by which users can easily get their desired results without needing to go through the mathematical details.

摘要

就像蛋白质中的翻译后修饰(PTM)或翻译后局部修饰(PTLM)一样,RNA中的转录后修饰(PTCM)在生物过程中起着非常重要的作用。N6-甲基腺苷(m6A)出现在带有遗传密码基序(GAC)的腺嘌呤(A)上,是在病毒和大多数真核生物中发现的RNA中最常见且含量丰富的转录后修饰之一。给定一个包含许多GAC基序的未表征RNA序列,其中哪些可以被甲基化,哪些不能?解决这个问题对基础研究和药物开发都很重要。特别是在后基因组时代产生了大量RNA序列的情况下,迫切需要开发计算方法来及时识别RNA中的N6-甲基腺苷位点。在这里,我们提出了一种名为pRNAm-PC的新预测器,其中RNA序列样本通过一种新的伪二核苷酸组成(PseDNC)模式来表示,其组成成分是通过一系列自协方差和交叉协方差变换从物理化学矩阵中推导出来的。通过严格的留一法检验观察到,与用于相同目的的现有预测器相比,pRNAm-PC在总体准确性和稳定性方面都取得了显著更高的成功率,这表明新的预测器将成为识别RNA甲基化位点的有用高通量工具,并且这种新方法还可用于研究许多其他与RNA相关的问题并进行基因组分析。已在http://www.jci-bioinfo.cn/pRNAm-PC上建立了一个用户友好的pRNAm-PC网络服务器,用户通过该服务器可以轻松获得所需结果,而无需了解数学细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验