RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; Cell Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands.
RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
Cell Rep. 2016 Jan 12;14(2):189-99. doi: 10.1016/j.celrep.2015.12.024. Epub 2015 Dec 31.
The local synthesis of transmembrane proteins underlies functional specialization of dendritic microdomains in neuronal plasticity. It is unclear whether these proteins have access to the complete machinery of the secretory pathway following local synthesis. In this study, we describe a probe called pGolt that allows visualization of Golgi-related organelles for live imaging in neurons. We show that pGolt labels a widespread microsecretory Golgi satellite (GS) system that is, in contrast to Golgi outposts, present throughout basal and apical dendrites of all pyramidal neurons. The GS system contains glycosylation machinery and is localized between ERGIC and retromer. Synaptic activity restrains lateral movement of ERGIC, GS, and retromer close to one another, allowing confined processing of secretory cargo. Several synaptic transmembrane proteins pass through and recycle back to the GS system. Thus, the presence of an ER-ERGIC-GS-retromer microsecretory system in all neuronal dendrites enables autonomous local control of transmembrane protein synthesis and processing.
跨膜蛋白的局部合成是树突微域在神经元可塑性中功能特化的基础。目前尚不清楚这些蛋白质在局部合成后是否能够获得完整的分泌途径机制。在这项研究中,我们描述了一种称为 pGolt 的探针,它允许可视化高尔基体相关细胞器,以便在神经元中进行活细胞成像。我们发现,pGolt 标记了广泛存在的微分泌高尔基体卫星(GS)系统,与高尔基体前哨不同,该系统存在于所有锥体神经元的基底和顶端树突中。GS 系统包含糖基化机制,定位于 ERGIC 和逆行转运体之间。突触活动限制 ERGIC、GS 和逆行转运体彼此之间的侧向运动,从而能够对分泌货物进行受限处理。几种突触跨膜蛋白通过并循环回到 GS 系统。因此,所有神经元树突中存在 ER-ERGIC-GS-逆行转运体微分泌系统,能够实现跨膜蛋白合成和加工的自主局部控制。