Del-Cid Abdiel, Gil-Durán Carlos, Vaca Inmaculada, Rojas-Aedo Juan F, García-Rico Ramón O, Levicán Gloria, Chávez Renato
Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
PLoS One. 2016 Jan 11;11(1):e0147047. doi: 10.1371/journal.pone.0147047. eCollection 2016.
The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.
丝状真菌罗克福青霉是广为人知的蓝纹奶酪成熟剂。此外,这种真菌能够产生多种次级代谢产物,包括聚酮萜类化合物霉酚酸(MPA)。用罗克福青霉催熟的奶酪通常会被MPA污染。另一方面,MPA是一种具有商业价值的免疫抑制剂。然而,迄今为止,罗克福青霉产生MPA的分子基础仍然未知。我们采用生物信息学方法,鉴定出一个约24.4 kbp的基因组区域,其中包含一个七基因簇,可能参与罗克福青霉中MPA的生物合成。对这七个基因(分别命名为mpaA、mpaB、mpaC、mpaDE、mpaF、mpaG和mpaH)中的每一个进行基因沉默,都会导致MPA产量大幅降低,证实所有这些基因都参与了该化合物的生物合成。有趣的是,mpaF基因最初在短密青霉中被描述为MPA自我抗性基因,在罗克福青霉中也发挥相同功能,这表明该基因在MPA代谢中具有双重功能。了解罗克福青霉中MPA的生物合成途径对于未来控制奶酪中MPA污染以及提高MPA的商业生产具有重要意义。