Suppr超能文献

表皮生长因子受体x c-Met双特异性抗体的交叉臂结合效率

Cross-arm binding efficiency of an EGFR x c-Met bispecific antibody.

作者信息

Zheng Songmao, Moores Sheri, Jarantow Stephen, Pardinas Jose, Chiu Mark, Zhou Honghui, Wang Weirong

机构信息

a Biologics Clinical Pharmacology , Janssen R&D US.

c US Biology Oncology , Janssen R&D US.

出版信息

MAbs. 2016;8(3):551-61. doi: 10.1080/19420862.2015.1136762. Epub 2016 Jan 13.

Abstract

Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.

摘要

多特异性蛋白,如双特异性抗体(BsAbs),可结合两种不同的配体,正日益成为重要的治疗药物。当两个药效基团同时与其靶标结合时,此类双特异性抗体可表现出显著增强的靶标结合能力和靶标驻留时间。交叉臂结合效率(χ)描述了双特异性抗体在与同一细胞上的第一个靶标或受体(R1)结合后,再与第二个靶标或受体(R2)结合时,表观亲和力的增加。χ是双特异性抗体的一个内在特性,主要与R1和R2上的结合表位有关。χ对靶向同一细胞上两种受体的双特异性抗体与R2的结合可能产生重大影响。JNJ-61186372是一种靶向表皮生长因子受体(EGFR)和c-Met的双特异性抗体,被用作建立表征χ方法的模型化合物。通过将体外细胞结合数据拟合到包含χ的配体结合模型,成功测定了JNJ-61186372的χ值。模型得出的χ值用于预测JNJ-61186372与肿瘤细胞系上单个EGFR和c-Met受体的结合,结果与观察到的JNJ-61186372抑制EGFR和c-Met磷酸化的IC50值吻合良好。与模型一致,在小鼠异种移植模型中,相同剂量水平下,JNJ-61186372比抗EGFR和抗c-Met单价抗体联合治疗更有效。我们的结果表明,χ是双特异性抗体的一个重要特性,在合理设计靶向同一细胞上两个膜结合靶标的双特异性抗体时应予以考虑。

相似文献

1
Cross-arm binding efficiency of an EGFR x c-Met bispecific antibody.
MAbs. 2016;8(3):551-61. doi: 10.1080/19420862.2015.1136762. Epub 2016 Jan 13.
2
Nanocell targeting using engineered bispecific antibodies.
MAbs. 2015;7(1):53-65. doi: 10.4161/19420862.2014.985952.
5
Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells.
MAbs. 2017 Jan;9(1):114-126. doi: 10.1080/19420862.2016.1249079. Epub 2016 Oct 27.
8
In vitro and in vivo antitumor effects of recombinant bispecific antibodies based on humanized anti-EGFR antibody.
Oncol Rep. 2011 Oct;26(4):949-55. doi: 10.3892/or.2011.1382. Epub 2011 Jul 4.
9
Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET.
J Biol Chem. 2021 Jan-Jun;296:100641. doi: 10.1016/j.jbc.2021.100641. Epub 2021 Apr 8.

引用本文的文献

1
The User's Guide to Amivantamab.
Target Oncol. 2025 Mar;20(2):235-245. doi: 10.1007/s11523-025-01128-6. Epub 2025 Feb 4.
2
c-MET and the immunological landscape of cancer: novel therapeutic strategies for enhanced anti-tumor immunity.
Front Immunol. 2024 Nov 27;15:1498391. doi: 10.3389/fimmu.2024.1498391. eCollection 2024.
3
Quantitative pharmacology of dual-targeted bicistronic CAR-T-cell therapy using multiscale mechanistic modeling.
CPT Pharmacometrics Syst Pharmacol. 2025 Feb;14(2):229-245. doi: 10.1002/psp4.13259. Epub 2024 Nov 7.
4
A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion.
Mol Ther. 2024 Nov 6;32(11):4075-4094. doi: 10.1016/j.ymthe.2024.09.010. Epub 2024 Sep 7.
5
The development of amivantamab for the treatment of non-small cell lung cancer.
Respir Res. 2023 Oct 25;24(1):256. doi: 10.1186/s12931-023-02558-4.
6
Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer.
Mol Ther Nucleic Acids. 2023 Oct 4;34:102046. doi: 10.1016/j.omtn.2023.102046. eCollection 2023 Dec 12.
7
The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial.
Nat Med. 2023 Nov;29(11):2814-2824. doi: 10.1038/s41591-023-02593-0. Epub 2023 Oct 19.
8
Bispecific antibodies in cancer therapy: Target selection and regulatory requirements.
Acta Pharm Sin B. 2023 Sep;13(9):3583-3597. doi: 10.1016/j.apsb.2023.05.023. Epub 2023 May 23.
9
Design and selection of optimal ErbB-targeting bispecific antibodies in pancreatic cancer.
Front Immunol. 2023 Apr 20;14:1168444. doi: 10.3389/fimmu.2023.1168444. eCollection 2023.
10
Avidity in antibody effector functions and biotherapeutic drug design.
Nat Rev Drug Discov. 2022 Oct;21(10):715-735. doi: 10.1038/s41573-022-00501-8. Epub 2022 Jul 5.

本文引用的文献

2
The coming of age of engineered multivalent antibodies.
Drug Discov Today. 2015 May;20(5):588-94. doi: 10.1016/j.drudis.2015.02.013. Epub 2015 Mar 7.
3
Bispecific antibodies rise again.
Nat Rev Drug Discov. 2014 Nov;13(11):799-801. doi: 10.1038/nrd4478.
4
Bispecific antibodies with native chain structure.
Nat Biotechnol. 2014 Feb;32(2):136-7. doi: 10.1038/nbt.2812.
5
Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface.
Nat Biotechnol. 2014 Feb;32(2):191-8. doi: 10.1038/nbt.2797. Epub 2014 Jan 26.
6
MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors.
Mol Cancer Ther. 2014 Feb;13(2):410-25. doi: 10.1158/1535-7163.MCT-13-0255. Epub 2013 Nov 26.
7
A tunable coarse-grained model for ligand-receptor interaction.
PLoS Comput Biol. 2013;9(11):e1003274. doi: 10.1371/journal.pcbi.1003274. Epub 2013 Nov 14.
8
Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.
Methods. 2014 Jan 1;65(1):77-94. doi: 10.1016/j.ymeth.2013.10.016. Epub 2013 Nov 6.
9
Mind the gap.
Methods. 2014 Jan 1;65(1):1-4. doi: 10.1016/j.ymeth.2013.10.012. Epub 2013 Oct 30.
10
Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies.
Methods. 2014 Jan 1;65(1):95-104. doi: 10.1016/j.ymeth.2013.07.017. Epub 2013 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验