Bi Yaling, Liu Weitang, Guo Wenlei, Li Lingxu, Yuan Guohui, Du Long, Wang Jinxin
College of Agronomy, Anhui Science and Technology University, Anhui, Fengyang 233100, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China.
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China.
Pestic Biochem Physiol. 2016 Jan;126:22-7. doi: 10.1016/j.pestbp.2015.07.002. Epub 2015 Jul 16.
Fenoxaprop-P-ethyl-resistant Alopecurus japonicus has become a recurring problem in winter wheat fields in eastern China. Growers have resorted to using mesosulfuron-methyl, an acetolactate synthase (ALS)-inhibiting herbicide, to control this weed. A single A. japonicus population (AH-15) resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl was found in Anhui Province, China. The results of whole-plant dose-response experiments showed that AH-15 has evolved high-level resistance to fenoxaprop-P-ethyl (95.96-fold) and mesosulfuron-methyl (39.87-fold). It was shown via molecular analysis that resistance to both fenoxaprop-P-ethyl and mesosulfuron-methyl was due to an amino acid substitution of Ile1781 to Leu in acetyl-CoA carboxylase (ACCase) and a substitution of Trp 574 to Leu in ALS, respectively. Whole-plant bioassays indicated that the AH-15 population was resistant to the ACCase herbicides clodinafop-propargyl, clethodim, sethoxydim and pinoxaden as well as the ALS herbicides pyroxsulam, flucarbazone-Na and imazethapyr, but susceptible to the ACCase herbicide haloxyfop-R-methyl. This work reports for the first time that A. japonicus has developed resistance to ACCase- and ALS-inhibiting herbicides due to target site mutations in the ACCase and ALS genes.