Suppr超能文献

未分化的人类多能干细胞具有缺乏囊胚或生殖系记忆的甲基化图谱。

Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory.

作者信息

Pastor William A, Chen Di, Liu Wanlu, Kim Rachel, Sahakyan Anna, Lukianchikov Anastasia, Plath Kathrin, Jacobsen Steven E, Clark Amander T

机构信息

Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles CA 90095.

Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California Los Angeles, Los Angeles CA 90095.

出版信息

Cell Stem Cell. 2016 Mar 3;18(3):323-329. doi: 10.1016/j.stem.2016.01.019. Epub 2016 Feb 4.

Abstract

Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.

摘要

人类胚胎干细胞(hESCs)通常表现出“始发态”多能性,类似于从小鼠植入后上胚层衍生而来的干细胞。这促使人们寻找能够支持hESCs自我更新的培养条件,类似于人类植入前胚胎中低甲基化的原始上胚层细胞。我们发现,将始发态hESCs恢复到低甲基化的原始状态,或在原始条件下衍生出新的hESC系,会导致建立阶段特异性胚胎抗原4(SSEA4)阴性的hESC系,其转录程序类似于人类植入前上胚层。相比之下,我们发现体外原始hESCs的甲基化组与体内人类上胚层的甲基化组不同,主要印记处的DNA甲基化缺失,并且失去了人类卵母细胞甲基化状态的“记忆”。在体外自我更新的低甲基化原始hESCs中,未能恢复原始上胚层的甲基化格局似乎是一个一致的特征。

相似文献

1
Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory.
Cell Stem Cell. 2016 Mar 3;18(3):323-329. doi: 10.1016/j.stem.2016.01.019. Epub 2016 Feb 4.
2
Transcriptional landscape changes during human embryonic stem cell derivation.
Mol Hum Reprod. 2018 Nov 1;24(11):543-555. doi: 10.1093/molehr/gay039.
3
The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos.
Cells Dev. 2024 Sep;179:203935. doi: 10.1016/j.cdev.2024.203935. Epub 2024 Jun 22.
4
Capturing Human Naïve Pluripotency in the Embryo and in the Dish.
Stem Cells Dev. 2017 Aug 15;26(16):1141-1161. doi: 10.1089/scd.2017.0055. Epub 2017 Jun 26.
5
Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.
Cell Stem Cell. 2017 Jan 5;20(1):87-101. doi: 10.1016/j.stem.2016.10.006. Epub 2016 Dec 15.
6
Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass.
Stem Cell Reports. 2016 Apr 12;6(4):437-446. doi: 10.1016/j.stemcr.2016.02.005. Epub 2016 Mar 3.
8
The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology.
Hum Reprod Update. 2015 Sep-Oct;21(5):616-26. doi: 10.1093/humupd/dmv028. Epub 2015 Jun 18.
9
Signaling roadmap modulating naive and primed pluripotency.
Stem Cells Dev. 2014 Feb 1;23(3):193-208. doi: 10.1089/scd.2013.0368. Epub 2013 Nov 27.
10
Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo.
Anim Reprod Sci. 2014 Sep;149(1-2):67-79. doi: 10.1016/j.anireprosci.2014.05.014. Epub 2014 Jul 1.

引用本文的文献

1
Modeling post-gastrula development via bidirectional pluripotent stem cells.
Cell Res. 2025 Aug 29. doi: 10.1038/s41422-025-01172-x.
2
A new class of human CpG Island promoters with primate-specific repeats.
Sci Rep. 2025 Jul 29;15(1):27630. doi: 10.1038/s41598-025-11213-5.
3
Why are imprints unstable in pluripotent stem cells?
Biochem Soc Trans. 2025 Jul 17. doi: 10.1042/BST20243003.
4
The building blocks of embryo models: embryonic and extraembryonic stem cells.
Cell Discov. 2025 Apr 22;11(1):40. doi: 10.1038/s41421-025-00780-6.
5
Safeguarding genomic imprints in naive human pluripotency.
Stem Cell Reports. 2025 May 13;20(5):102475. doi: 10.1016/j.stemcr.2025.102475. Epub 2025 Apr 17.
6
Pluripotent cell states and fates in human embryo models.
Development. 2025 Apr 1;152(7). doi: 10.1242/dev.204565. Epub 2025 Apr 2.
7
Totipotency or plenipotency: rethinking stem cell bipotentiality.
Curr Opin Genet Dev. 2025 Jun;92:102342. doi: 10.1016/j.gde.2025.102342. Epub 2025 Mar 19.
8
A chromatin-focused CRISPR screen identifies USP22 as a barrier to somatic cell reprogramming.
Commun Biol. 2025 Mar 18;8(1):454. doi: 10.1038/s42003-025-07899-y.
9
Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naive pluripotent stem cells.
Stem Cell Reports. 2025 Apr 8;20(4):102450. doi: 10.1016/j.stemcr.2025.102450. Epub 2025 Mar 13.
10
Tracking and mitigating imprint erasure during induction of naive human pluripotency at single-cell resolution.
Stem Cell Reports. 2025 Mar 11;20(3):102419. doi: 10.1016/j.stemcr.2025.102419. Epub 2025 Feb 13.

本文引用的文献

1
PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation.
Stem Cell Reports. 2015 Sep 8;5(3):337-49. doi: 10.1016/j.stemcr.2015.07.006. Epub 2015 Aug 13.
2
DNA Demethylation Dynamics in the Human Prenatal Germline.
Cell. 2015 Jun 4;161(6):1425-36. doi: 10.1016/j.cell.2015.05.012. Epub 2015 May 21.
3
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.
Nat Genet. 2015 May;47(5):469-78. doi: 10.1038/ng.3258. Epub 2015 Mar 30.
4
Genome-wide analysis of DNA methylation dynamics during early human development.
PLoS Genet. 2014 Dec 11;10(12):e1004868. doi: 10.1371/journal.pgen.1004868. eCollection 2014 Dec.
6
Resetting transcription factor control circuitry toward ground-state pluripotency in human.
Cell. 2014 Sep 11;158(6):1254-1269. doi: 10.1016/j.cell.2014.08.029.
7
Systematic identification of culture conditions for induction and maintenance of naive human pluripotency.
Cell Stem Cell. 2014 Oct 2;15(4):471-487. doi: 10.1016/j.stem.2014.07.002. Epub 2014 Jul 24.
8
DNA methylation dynamics of the human preimplantation embryo.
Nature. 2014 Jul 31;511(7511):611-5. doi: 10.1038/nature13581. Epub 2014 Jul 23.
9
Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency.
Cell Rep. 2014 Jun 26;7(6):1968-81. doi: 10.1016/j.celrep.2014.05.037. Epub 2014 Jun 12.
10
Reorganization of enhancer patterns in transition from naive to primed pluripotency.
Cell Stem Cell. 2014 Jun 5;14(6):838-53. doi: 10.1016/j.stem.2014.04.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验