Suppr超能文献

枯草芽孢杆菌NCIB 3610和B-1生物膜物理性质的直接比较

Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.

作者信息

Kesel Sara, Grumbein Stefan, Gümperlein Ina, Tallawi Marwa, Marel Anna-Kristina, Lieleg Oliver, Opitz Madeleine

机构信息

Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.

Institute of Medical Engineering and Department of Mechanical Engineering, Technische Universität München, Garching, Germany.

出版信息

Appl Environ Microbiol. 2016 Apr 4;82(8):2424-2432. doi: 10.1128/AEM.03957-15. Print 2016 Apr.

Abstract

Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain,B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms.

摘要

许多细菌会形成附着于表面的群落,即生物膜。由于这些细菌生物膜对抗生素和机械应力具有极强的抗性,生物膜不仅在微生物学领域,而且在医学和工业领域都越来越受到关注。先前的研究已经确定了枯草芽孢杆菌NCIB 3610形成的生物膜基质中存在的细胞外聚合物。然而,关于该菌株形成的生物膜物理性质的研究才刚刚起步。特别是,缺乏关于生物膜基质生物聚合物对这些物理性质贡献的定量数据。在这里,我们定量研究了枯草芽孢杆菌NCIB 3610生物膜的三种物理性质:这些生物膜的表面粗糙度、硬度以及整体粘弹性。我们展示了构成该菌株形成的生物膜基质的特定生物分子如何对这些生物膜性质产生影响。特别是,我们证明了1日龄的NCIB 3610生物膜的表面粗糙度和表面弹性受到表层蛋白BslA的强烈影响。对于第二种菌株枯草芽孢杆菌B - 1,它形成的生物膜主要含有γ-聚谷氨酸,我们发现其生物膜的物理性质有显著差异,并且这些性质受常用抗菌剂乙醇的影响也不同。我们表明,B - 1生物膜能免受乙醇引起的生物膜硬度变化的影响,并且仅通过向生长中的NCIB 3610生物膜中添加γ-聚谷氨酸,这种保护作用就能转移到NCIB 3610生物膜上。总之,我们的结果证明了特定生物膜基质成分对枯草芽孢杆菌生物膜独特物理性质的重要性。

相似文献

1
Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.
Appl Environ Microbiol. 2016 Apr 4;82(8):2424-2432. doi: 10.1128/AEM.03957-15. Print 2016 Apr.
2
Importance of the biofilm matrix for the erosion stability of NCIB 3610 biofilms.
RSC Adv. 2019 Apr 11;9(20):11521-11529. doi: 10.1039/c9ra01955c. eCollection 2019 Apr 9.
3
BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
Mol Microbiol. 2012 Jul;85(1):51-66. doi: 10.1111/j.1365-2958.2012.08094.x. Epub 2012 May 28.
4
Biofilm hydrophobicity in environmental isolates of .
Microbiology (Reading). 2021 Sep;167(9). doi: 10.1099/mic.0.001082.
5
A Dual-Species Biofilm with Emergent Mechanical and Protective Properties.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00670-18. Print 2019 Sep 15.
6
Biopolymer-enriched B. subtilis NCIB 3610 biofilms exhibit increased erosion resistance.
Biomater Sci. 2019 Nov 1;7(11):4675-4686. doi: 10.1039/c9bm00927b. Epub 2019 Sep 2.
7
The protective layer of biofilm: a repellent function for a new class of amphiphilic proteins.
Mol Microbiol. 2012 Jul;85(1):8-11. doi: 10.1111/j.1365-2958.2012.08101.x. Epub 2012 May 30.
8
Metal ions weaken the hydrophobicity and antibiotic resistance of NCIB 3610 biofilms.
NPJ Biofilms Microbiomes. 2020 Jan 3;6:1. doi: 10.1038/s41522-019-0111-8. eCollection 2020.
9
6S-2 RNA deletion in the undomesticated strain NCIB 3610 causes a biofilm derepression phenotype.
RNA Biol. 2021 Jan;18(1):79-92. doi: 10.1080/15476286.2020.1795408. Epub 2020 Aug 30.

引用本文的文献

1
A promiscuous Bcd amino acid dehydrogenase promotes biofilm development in Bacillus subtilis.
NPJ Biofilms Microbiomes. 2025 Jun 21;11(1):112. doi: 10.1038/s41522-025-00750-6.
2
Facing Foodborne Pathogen Biofilms with Green Antimicrobial Agents: One Health Approach.
Molecules. 2025 Apr 9;30(8):1682. doi: 10.3390/molecules30081682.
3
Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0013824. doi: 10.1128/mmbr.00138-24. Epub 2025 Jan 24.
4
Rapid Stiffness Mapping in Soft Biologic Tissues With Micrometer Resolution Using Optical Multifrequency Time-Harmonic Elastography.
Adv Sci (Weinh). 2025 Feb;12(8):e2410473. doi: 10.1002/advs.202410473. Epub 2024 Dec 16.
6
How bacteria actively use passive physics to make biofilms.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2403842121. doi: 10.1073/pnas.2403842121. Epub 2024 Sep 12.
7
Titanium complexes affect biofilm formation.
RSC Med Chem. 2023 May 2;14(5):983-991. doi: 10.1039/d3md00075c. eCollection 2023 May 25.
8
Ultra-lightweight living structural material for enhanced stiffness and environmental sensing.
Mater Today Bio. 2022 Nov 26;18:100504. doi: 10.1016/j.mtbio.2022.100504. eCollection 2023 Feb.
9
Experimental challenges in determining the rheological properties of bacterial biofilms.
Interface Focus. 2022 Oct 14;12(6):20220032. doi: 10.1098/rsfs.2022.0032. eCollection 2022 Dec 6.
10
Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122202119. doi: 10.1073/pnas.2122202119. Epub 2022 Jul 18.

本文引用的文献

1
Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities.
Molecules. 2015 Mar 24;20(4):5286-98. doi: 10.3390/molecules20045286.
3
Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3086-91. doi: 10.1073/pnas.1414272112. Epub 2015 Feb 23.
5
rheology of bacterial biofilms.
Soft Matter. 2013 Jan 7;9(1):122-131. doi: 10.1039/C2SM27005F.
6
Draft Genome Sequence of the Biofilm-Producing Bacillus subtilis Strain B-1, Isolated from an Oil Field.
Genome Announc. 2014 Dec 11;2(6):e01163-14. doi: 10.1128/genomeA.01163-14.
7
Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.
mBio. 2014 Aug 5;5(4):e01536-14. doi: 10.1128/mBio.01536-14.
8
Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.
Scanning. 2014 Sep-Oct;36(5):551-3. doi: 10.1002/sca.21148. Epub 2014 Jul 10.
9
Carbohydrate coating reduces adhesion of biofilm-forming Bacillus subtilis to gold surfaces.
Appl Environ Microbiol. 2014 Oct;80(19):5911-7. doi: 10.1128/AEM.01600-14. Epub 2014 Jul 18.
10
Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.
Mol Microbiol. 2014 Aug;93(4):587-98. doi: 10.1111/mmi.12697. Epub 2014 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验