Suppr超能文献

代谢风险因素的代谢物特征及其纵向变化

Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes.

作者信息

Yin Xiaoyan, Subramanian Subha, Willinger Christine M, Chen George, Juhasz Peter, Courchesne Paul, Chen Brian H, Li Xiaohang, Hwang Shih-Jen, Fox Caroline S, O'Donnell Christopher J, Muntendam Pieter, Fuster Valentin, Bobeldijk-Pastorova Ivana, Sookoian Silvia C, Pirola Carlos J, Gordon Neal, Adourian Aram, Larson Martin G, Levy Daniel

机构信息

Framingham Heart Study (X.Y., S.S., C.M.W., G.C., P.C., B.H.C., S.-J.H., C.S.F., C.J.O., M.G.L., D.L.), Framingham, Massachusetts 01702; Boston University Department of Mathematics and School of Public Health (X.Y., M.G.L.), Boston, Massachusetts 02118; Population Sciences Branch (S.S., C.M.W., G.C., P.C., B.H.C., S.-J.H., C.S.F., C.J.O., D.L.), Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892; BG Medicine, Inc (P.J., X.L., P.M., N.G., A.A.), Waltham, Massachusetts 02451; Department of Medicine (C.S.F.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Department of Medicine (C.J.O.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Mount Sinai School of Medicine (V.F.), New York, New York 10029; Centro Nacional de Investigaciones Cardiovasculares (V.F.), 28029 Madrid, Spain; TNO Triskelion BV, Inc (I.B.-P.), 3704 HE Zeist, The Netherlands; Institute of Medical Research A Lanari-IDIM, University of Buenos Aires (S.C.S., C.J.P.), National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires C11428, Argentina; and Boston University School of Medicine (D.L.), Boston, Massachusetts 02118.

出版信息

J Clin Endocrinol Metab. 2016 Apr;101(4):1779-89. doi: 10.1210/jc.2015-2555. Epub 2016 Feb 23.

Abstract

CONTEXT

Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and dysglycemia.

OBJECTIVE

To uncover mechanistic links between metabolomic dysregulation and metabolic risk by testing metabolite associations with risk factors cross-sectionally and with risk factor changes over time.

DESIGN

Cross-sectional—discovery samples (n = 650; age, 36–69 years) from the Framingham Heart Study (FHS) and replication samples (n = 670; age, 61–76 years) from the BioImage Study, both following a factorial design sampled from high vs low strata of body mass index, lipids, and glucose. Longitudinal—FHS participants (n = 554) with 5–7 years of follow-up for risk factor changes.

SETTING

Observational studies.

PARTICIPANTS

Cross-sectional samples with or without obesity, dysglycemia, and dyslipidemia, excluding prevalent cardiovascular disease and diabetes or dyslipidemia treatment. Age- and sex-matched by group.

INTERVENTIONS

None.

MAIN OUTCOME MEASURE(S): Gas chromatography-mass spectrometry detected 119 plasma metabolites. Cross-sectional associations with obesity, dyslipidemia, and dysglycemia were tested in discovery, with external replication of 37 metabolites. Single- and multi-metabolite markers were tested for association with longitudinal changes in risk factors.

RESULTS

Cross-sectional metabolite associations were identified with obesity (n = 26), dyslipidemia (n = 21), and dysglycemia (n = 11) in discovery. Glutamic acid, lactic acid, and sitosterol associated with all three risk factors in meta-analysis (P < 4.5 × 10−4). Metabolites associated with longitudinal risk factor changes were enriched for bioactive lipids. Multi-metabolite panels explained 2.5–15.3% of longitudinal changes in metabolic traits.

CONCLUSIONS

Cross-sectional results implicated dysregulated glutamate cycling and amino acid metabolism in metabolic risk. Certain bioactive lipids were associated with risk factors cross-sectionally and over time, suggesting their upstream role in risk factor progression. Functional studies are needed to validate findings and facilitate translation into treatments or preventive measures.

摘要

背景

代谢失调是肥胖、血脂异常和血糖异常等关键代谢危险因素的基础。

目的

通过横断面检测代谢物与危险因素的关联以及代谢物与危险因素随时间的变化,揭示代谢组学失调与代谢风险之间的机制联系。

设计

横断面研究——来自弗雷明汉心脏研究(FHS)的发现样本(n = 650;年龄36 - 69岁)和来自生物影像研究的复制样本(n = 670;年龄61 - 76岁),两者均采用析因设计,从体重指数、血脂和血糖的高分层与低分层中抽样。纵向研究——对554名FHS参与者进行5至7年的随访以观察危险因素的变化。

地点

观察性研究。

参与者

有或无肥胖、血糖异常和血脂异常的横断面样本,排除现患心血管疾病以及糖尿病或血脂异常治疗情况。按组进行年龄和性别匹配。

干预措施

无。

主要观察指标

气相色谱 - 质谱法检测119种血浆代谢物。在发现样本中检测代谢物与肥胖、血脂异常和血糖异常的横断面关联,并对37种代谢物进行外部复制验证。测试单代谢物和多代谢物标志物与危险因素纵向变化的关联。

结果

在发现样本中确定了代谢物与肥胖(n = 26)、血脂异常(n = 21)和血糖异常(n = 11)的横断面关联。在荟萃分析中,谷氨酸、乳酸和谷甾醇与所有三个危险因素相关(P < 4.5×10−4)。与危险因素纵向变化相关的代谢物富含生物活性脂质。多代谢物组合解释了代谢特征纵向变化的2.5% - 15.3%。

结论

横断面结果表明谷氨酸循环失调和氨基酸代谢与代谢风险有关。某些生物活性脂质在横断面和随时间均与危险因素相关,提示它们在危险因素进展中的上游作用。需要进行功能研究以验证研究结果,并促进将其转化为治疗或预防措施。

相似文献

1
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes.
J Clin Endocrinol Metab. 2016 Apr;101(4):1779-89. doi: 10.1210/jc.2015-2555. Epub 2016 Feb 23.
2
Lipidomic profiling identifies signatures of metabolic risk.
EBioMedicine. 2020 Jan;51:102520. doi: 10.1016/j.ebiom.2019.10.046. Epub 2019 Dec 24.
3
Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes.
PLoS One. 2016 Feb 10;11(2):e0148361. doi: 10.1371/journal.pone.0148361. eCollection 2016.
4
Metabolite profiling identifies pathways associated with metabolic risk in humans.
Circulation. 2012 May 8;125(18):2222-31. doi: 10.1161/CIRCULATIONAHA.111.067827. Epub 2012 Apr 11.
8
Metabolomic characterization of hypertension and dyslipidemia.
Metabolomics. 2018 Aug 31;14(9):117. doi: 10.1007/s11306-018-1408-y.
9
Metabolic Architecture of Acute Exercise Response in Middle-Aged Adults in the Community.
Circulation. 2020 Nov 17;142(20):1905-1924. doi: 10.1161/CIRCULATIONAHA.120.050281. Epub 2020 Sep 15.

引用本文的文献

1
Metabolomics Insights into Gut Microbiota and Functional Constipation.
Metabolites. 2025 Apr 12;15(4):269. doi: 10.3390/metabo15040269.
5
Systemic Inflammation is Associated with Cardiometabolic Risk Factors and Clinical Outcomes.
J Inflamm Res. 2022 Dec 29;15:6891-6903. doi: 10.2147/JIR.S382620. eCollection 2022.
6
Minding the Gap Beyond Kidney Disease: Utility of the Anion Gap in Metabolic Syndrome.
Kidney360. 2022 Nov 24;3(11):1819-1822. doi: 10.34067/KID.0005142022.
7
Metabolomics prospect of obesity and metabolic syndrome; a systematic review.
J Diabetes Metab Disord. 2021 Nov 26;21(1):889-917. doi: 10.1007/s40200-021-00917-w. eCollection 2022 Jun.
8
Associations between metabolites and pancreatic cancer risk in a large prospective epidemiological study.
Gut. 2020 Nov;69(11):2008-2015. doi: 10.1136/gutjnl-2019-319811. Epub 2020 Feb 14.
10
70-year legacy of the Framingham Heart Study.
Nat Rev Cardiol. 2019 Nov;16(11):687-698. doi: 10.1038/s41569-019-0202-5.

本文引用的文献

1
Prevalence of the metabolic syndrome in the United States, 2003-2012.
JAMA. 2015 May 19;313(19):1973-4. doi: 10.1001/jama.2015.4260.
3
Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease.
PLoS Genet. 2014 Dec 11;10(12):e1004801. doi: 10.1371/journal.pgen.1004801. eCollection 2014 Dec.
4
Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study.
J Clin Endocrinol Metab. 2015 Mar;100(3):E463-8. doi: 10.1210/jc.2014-2357. Epub 2014 Nov 25.
5
Etiology and therapeutic approach to elevated lactate levels.
Mayo Clin Proc. 2013 Oct;88(10):1127-40. doi: 10.1016/j.mayocp.2013.06.012.
6
Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach.
Diabetes. 2013 Dec;62(12):4270-6. doi: 10.2337/db13-0570. Epub 2013 Jul 24.
7
Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice.
Diabetologia. 2013 Jun;56(6):1394-402. doi: 10.1007/s00125-013-2891-3. Epub 2013 Mar 19.
9
Lactate and risk of incident diabetes in a case-cohort of the atherosclerosis risk in communities (ARIC) study.
PLoS One. 2013;8(1):e55113. doi: 10.1371/journal.pone.0055113. Epub 2013 Jan 30.
10
Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness.
Metabolism. 2013 Jul;62(7):961-9. doi: 10.1016/j.metabol.2013.01.007. Epub 2013 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验