Suppr超能文献

多模态神经影像学生物标志物预测进展性轻度认知障碍。

Prediction of Progressive Mild Cognitive Impairment by Multi-Modal Neuroimaging Biomarkers.

机构信息

College of Information Science and Technology, Beijing Normal University, Beijing, China.

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

出版信息

J Alzheimers Dis. 2016;51(4):1045-56. doi: 10.3233/JAD-151010.

Abstract

For patients with mild cognitive impairment (MCI), the likelihood of progression to probable Alzheimer's disease (AD) is important not only for individual patient care, but also for the identification of participants in clinical trial, so as to provide early interventions. Biomarkers based on various neuroimaging modalities could offer complementary information regarding different aspects of disease progression. The current study adopted a weighted multi-modality sparse representation-based classification method to combine data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, from three imaging modalities: Volumetric magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG) positron emission tomography (PET), and florbetapir PET. We included 117 normal controls (NC) and 110 MCI patients, 27 of whom progressed to AD within 36 months (pMCI), while the remaining 83 remained stable (sMCI) over the same time period. Modality-specific biomarkers were identified to distinguish MCI from NC and to predict pMCI among MCI. These included the hippocampus, amygdala, middle temporal and inferior temporal regions for MRI, the posterior cingulum, precentral, and postcentral regions for FDG-PET, and the hippocampus, amygdala, and putamen for florbetapir PET. Results indicated that FDG-PET may be a more effective modality in discriminating MCI from NC and in predicting pMCI than florbetapir PET and MRI. Combining modality-specific sensitive biomarkers from the three modalities boosted the discrimination accuracy of MCI from NC (76.7%) and the prediction accuracy of pMCI (82.5%) when compared with the best single-modality results (73.6% for MCI and 75.6% for pMCI with FDG-PET).

摘要

对于轻度认知障碍(MCI)患者,向可能的阿尔茨海默病(AD)进展的可能性不仅对个体患者护理很重要,而且对临床试验参与者的识别也很重要,以便提供早期干预措施。基于各种神经影像学模式的生物标志物可以提供有关疾病进展不同方面的补充信息。本研究采用加权多模态稀疏表示分类方法,结合了来自阿尔茨海默病神经影像学倡议(ADNI)数据库的三种成像模式的数据:容积磁共振成像(MRI)、氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)和 florbetapir PET。我们纳入了 117 名正常对照(NC)和 110 名 MCI 患者,其中 27 名在 36 个月内进展为 AD(pMCI),而其余 83 名在同一时期保持稳定(sMCI)。确定了特定于模态的生物标志物,以区分 MCI 与 NC,并预测 MCI 中的 pMCI。这些生物标志物包括 MRI 的海马体、杏仁核、颞中回和颞下回,FDG-PET 的后扣带回、中央前回和中央后回,以及 florbetapir PET 的海马体、杏仁核和壳核。结果表明,FDG-PET 可能比 florbetapir PET 和 MRI 更有效地区分 MCI 与 NC,并且更能预测 pMCI。与最佳单模态结果(FDG-PET 对 MCI 为 73.6%,对 pMCI 为 75.6%)相比,结合三种模式的特定于模态的敏感生物标志物可提高 MCI 与 NC 的区分准确性(76.7%)和 pMCI 的预测准确性(82.5%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验