Suppr超能文献

局部序列背景对前导链和滞后链上编码基因的突变偏向性的影响。

The Effect of Local Sequence Context on Mutational Bias of Genes Encoded on the Leading and Lagging Strands.

作者信息

Schroeder Jeremy W, Hirst William G, Szewczyk Gabriella A, Simmons Lyle A

机构信息

Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Curr Biol. 2016 Mar 7;26(5):692-7. doi: 10.1016/j.cub.2016.01.016. Epub 2016 Feb 25.

Abstract

All organisms must replicate their genetic information accurately to ensure its faithful transmission. DNA polymerase errors provide an important source of genetic variation that can drive evolution. Understanding the origins of genetic variation will inform our understanding of evolution and the development of genetic diseases. A number of factors have been proposed to influence mutagenesis [1-10]. Here, we used mutation accumulation lines, whole-genome sequencing, and whole-transcriptome analysis to study the locations and rate at which mutations arise in bacteria with as little selection bias as possible [11, 12]. Our analysis of greater than 7,000 replication errors in over 180 sequenced lines that underwent a total of more than 370,000 generations has provided new insights into how DNA polymerase errors sculpt genetic variation and drive evolution. Homopolymer run enrichment outside of genes causes insertions and deletions in these regions. Genes encoded in the lagging strand are transcribed such that RNA polymerase and DNA polymerase collide head-on. Head-on genes have been proposed to mutate at a higher rate than genes transcribed codirectionally with DNA polymerase progression due to conflicts between transcription and DNA replication [6, 10]. We did not detect associations between the number of base pair substitutions in genes and their orientation or expression. Strikingly, any higher mutation rate for head-on genes can be explained by differing sequence composition between the leading and lagging strands and the error bias for DNA polymerase in specific sequence contexts. Therefore, we find local sequence context is the major determinant of mutagenesis in bacteria.

摘要

所有生物都必须准确复制其遗传信息,以确保其忠实传递。DNA聚合酶错误提供了遗传变异的一个重要来源,这种变异可以推动进化。了解遗传变异的起源将有助于我们理解进化和遗传疾病的发展。已经提出了许多因素来影响诱变作用[1-10]。在这里,我们使用突变积累系、全基因组测序和全转录组分析,尽可能减少选择偏差,来研究细菌中突变发生的位置和速率[11,12]。我们对超过180个测序系中超过7000个复制错误进行了分析,这些测序系总共经历了超过370000代,这为DNA聚合酶错误如何塑造遗传变异和推动进化提供了新的见解。基因外的同聚物重复富集导致这些区域的插入和缺失。滞后链中编码的基因转录时,RNA聚合酶和DNA聚合酶会迎头碰撞。由于转录和DNA复制之间的冲突,有人提出迎头基因的突变率高于与DNA聚合酶同向转录的基因[6,10]。我们没有检测到基因中碱基对替换的数量与其方向或表达之间的关联。引人注目的是,迎头基因任何较高的突变率都可以通过前导链和滞后链之间不同的序列组成以及特定序列背景下DNA聚合酶的错误偏差来解释。因此,我们发现局部序列背景是细菌诱变作用的主要决定因素。

相似文献

1
The Effect of Local Sequence Context on Mutational Bias of Genes Encoded on the Leading and Lagging Strands.
Curr Biol. 2016 Mar 7;26(5):692-7. doi: 10.1016/j.cub.2016.01.016. Epub 2016 Feb 25.
2
The Accelerated Evolution of Lagging Strand Genes Is Independent of Sequence Context.
Genome Biol Evol. 2016 Dec 1;8(12):3696-3702. doi: 10.1093/gbe/evw274.
3
An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1096-105. doi: 10.1073/pnas.1416651112. Epub 2015 Feb 23.
4
Accelerated gene evolution through replication-transcription conflicts.
Nature. 2013 Mar 28;495(7442):512-5. doi: 10.1038/nature11989.
5
Essentiality, not expressiveness, drives gene-strand bias in bacteria.
Nat Genet. 2003 Aug;34(4):377-8. doi: 10.1038/ng1209.
6
Spatial and Temporal Control of Evolution through Replication-Transcription Conflicts.
Trends Microbiol. 2017 Jul;25(7):515-521. doi: 10.1016/j.tim.2017.01.008. Epub 2017 Feb 16.
7
Increased rate of human mutations where DNA and RNA polymerases collide.
Trends Genet. 2009 Dec;25(12):523-7. doi: 10.1016/j.tig.2009.10.002. Epub 2009 Oct 23.
9
Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases.
Mol Cell. 2010 Jan 29;37(2):273-81. doi: 10.1016/j.molcel.2009.12.025.
10
Two essential DNA polymerases at the bacterial replication fork.
Science. 2001 Nov 23;294(5547):1716-9. doi: 10.1126/science.1066351.

引用本文的文献

1
GnT Motifs Can Increase T:A→G:C Mutation Rates Over 1000-fold in Bacteria.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf183.
2
Reduced Genetic Heterogeneity for Stable Bioproduction by Harnessing the Bias and Mechanism of Mutation.
Microb Biotechnol. 2025 Jun;18(6):e70162. doi: 10.1111/1751-7915.70162.
4
Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology.
Synth Syst Biotechnol. 2024 Nov 19;10(1):281-293. doi: 10.1016/j.synbio.2024.11.004. eCollection 2025.
6
8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals?
Int J Mol Sci. 2024 Jan 22;25(2):1342. doi: 10.3390/ijms25021342.
7
Mutation bias and adaptation in bacteria.
Microbiology (Reading). 2023 Nov;169(11). doi: 10.1099/mic.0.001404.
8
RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome wide.
Sci Adv. 2023 Jul 28;9(30):eadi5945. doi: 10.1126/sciadv.adi5945. Epub 2023 Jul 26.
9
Interplay between chromosomal architecture and termination of DNA replication in bacteria.
Front Microbiol. 2023 Jun 26;14:1180848. doi: 10.3389/fmicb.2023.1180848. eCollection 2023.
10
RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome-wide.
bioRxiv. 2023 May 8:2023.05.08.539860. doi: 10.1101/2023.05.08.539860.

本文引用的文献

1
Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E5990-9. doi: 10.1073/pnas.1512136112. Epub 2015 Oct 12.
2
Asymmetric Context-Dependent Mutation Patterns Revealed through Mutation-Accumulation Experiments.
Mol Biol Evol. 2015 Jul;32(7):1672-83. doi: 10.1093/molbev/msv055. Epub 2015 Mar 6.
3
An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1096-105. doi: 10.1073/pnas.1416651112. Epub 2015 Feb 23.
4
Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition.
Genome Res. 2014 Nov;24(11):1751-64. doi: 10.1101/gr.178335.114. Epub 2014 Sep 12.
5
Precise estimates of mutation rate and spectrum in yeast.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2310-8. doi: 10.1073/pnas.1323011111. Epub 2014 May 20.
6
Genome dynamics during experimental evolution.
Nat Rev Genet. 2013 Dec;14(12):827-39. doi: 10.1038/nrg3564. Epub 2013 Oct 29.
7
The influence of genomic context on mutation patterns in the human genome inferred from rare variants.
Genome Res. 2013 Dec;23(12):1974-84. doi: 10.1101/gr.154971.113. Epub 2013 Aug 29.
8
Accelerated gene evolution through replication-transcription conflicts.
Nature. 2013 Mar 28;495(7442):512-5. doi: 10.1038/nature11989.
9
Evidence that YycJ is a novel 5'-3' double-stranded DNA exonuclease acting in Bacillus anthracis mismatch repair.
DNA Repair (Amst). 2013 May 1;12(5):334-46. doi: 10.1016/j.dnarep.2013.02.002. Epub 2013 Mar 13.
10
On the mutational topology of the bacterial genome.
G3 (Bethesda). 2013 Mar;3(3):399-407. doi: 10.1534/g3.112.005355. Epub 2013 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验