Chang Chi-Lun, Liou Jen
Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):862-873. doi: 10.1016/j.bbalip.2016.02.015. Epub 2016 Feb 24.
The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-Ca(2+) signaling system is important for cell activation in response to various extracellular stimuli. This signaling system is initiated by receptor-induced hydrolysis of PI(4,5)P2 in the plasma membrane (PM) to generate the soluble second messenger inositol 1,4,5-trisphosphate (IP3). IP3 subsequently triggers the release of Ca(2+) from the endoplasmic reticulum (ER) store to the cytosol to activate Ca(2+)-mediated responses, such as secretion and proliferation. The consumed PM PI(4,5)P2 and ER Ca(2+) must be quickly restored to sustain signaling responses, and to maintain the homeostasis of PI(4,5)P2 and Ca(2+). Since phosphatidylinositol (PI), the precursor lipid for PM PI(4,5)P2, is synthesized in the ER membrane, and a Ca(2+) influx across the PM is required to refill the ER Ca(2+) store, efficient communications between the ER and the PM are critical for the homeostatic regulation of the PI(4,5)P2-Ca(2+) signaling system. This review describes the major findings that established the framework of the PI(4,5)P2-Ca(2+) signaling system, and recent discoveries on feedback control mechanisms at ER-PM junctions that sustain the PI(4,5)P2-Ca(2+) signaling system. Particular emphasis is placed on the characterization of ER-PM junctions where efficient communications between the ER and the PM occur, and the activation mechanisms of proteins that dynamically localize to ER-PM junctions to provide the feedback control during PI(4,5)P2-Ca(2+) signaling, including the ER Ca(2+) sensor STIM1, the extended synaptotagmin E-Syt1, and the PI transfer protein Nir2. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
磷脂酰肌醇4,5 - 二磷酸(PI(4,5)P2)-Ca(2+)信号系统对于细胞响应各种细胞外刺激的激活过程至关重要。该信号系统由受体诱导的质膜(PM)中PI(4,5)P2水解引发,生成可溶性第二信使肌醇1,4,5 - 三磷酸(IP3)。IP3随后触发内质网(ER)储存库中的Ca(2+)释放到细胞质中,以激活Ca(2+)介导的反应,如分泌和增殖。消耗的质膜PI(4,5)P2和内质网Ca(2+)必须迅速恢复,以维持信号反应,并维持PI(4,5)P2和Ca(2+)的稳态。由于质膜PI(4,5)P2的前体脂质磷脂酰肌醇(PI)在内质网膜中合成,并且需要通过质膜的Ca(2+)内流来重新填充内质网Ca(2+)储存库,因此内质网与质膜之间的有效通讯对于PI(4,5)P2 - Ca(2+)信号系统的稳态调节至关重要。本综述描述了建立PI(4,5)P2 - Ca(2+)信号系统框架的主要发现,以及关于内质网 - 质膜连接处维持PI(4,5)P2 - Ca(2+)信号系统的反馈控制机制的最新发现。特别强调了内质网与质膜之间发生有效通讯的内质网 - 质膜连接处的特征,以及在PI(4,5)P2 - Ca(2+)信号传导过程中动态定位于内质网 - 质膜连接处以提供反馈控制的蛋白质的激活机制,包括内质网Ca(2+)传感器STIM1、延伸突触结合蛋白E - Syt1和PI转运蛋白Nir2。本文是名为“细胞脂质格局”的特刊的一部分,由蒂姆·P·莱文和阿南特·K·梅农编辑。