Suppr超能文献

DNA 电荷输运:从化学原理到细胞。

DNA Charge Transport: from Chemical Principles to the Cell.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Cell Chem Biol. 2016 Jan 21;23(1):183-197. doi: 10.1016/j.chembiol.2015.11.010.

Abstract

The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science, and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology.

摘要

DNA 双螺旋结构吸引了许多人的想象力,使其成为生物研究的前沿领域。DNA 具有独特的特性,将我们的兴趣延伸到化学、物理、材料科学和工程领域。我们的实验室专注于 DNA 电荷传输 (CT) 的研究,其中电荷可以通过 DNA 螺旋有效地长距离传输,同时保持对碱基对π堆积的极高敏感性。由于 DNA CT 化学报告 DNA 双链体的完整性,因此可以利用这种特性来开发电化学设备来检测 DNA 损伤和 DNA 结合蛋白。此外,研究表明,例如,DNA 修复蛋白也可以在细胞中使用 DNA CT,作为一种细胞诊断方法,以便有效地扫描基因组以定位损伤部位。在这篇综述中,我们描述了 DNA CT 化学从发现基本化学原理到应用于诊断策略以及在生物学中可能的作用的演变。

相似文献

1
DNA Charge Transport: from Chemical Principles to the Cell.
Cell Chem Biol. 2016 Jan 21;23(1):183-197. doi: 10.1016/j.chembiol.2015.11.010.
2
DNA charge transport for sensing and signaling.
Acc Chem Res. 2012 Oct 16;45(10):1792-800. doi: 10.1021/ar3001298. Epub 2012 Aug 3.
3
Sensing DNA through DNA Charge Transport.
ACS Chem Biol. 2018 Jul 20;13(7):1799-1809. doi: 10.1021/acschembio.8b00347. Epub 2018 Jun 1.
4
DNA repair: models for damage and mismatch recognition.
Mutat Res. 2000 Jan 17;447(1):49-72. doi: 10.1016/s0027-5107(99)00195-5.
5
Magnetic Fields Facilitate DNA-Mediated Charge Transport.
Biochemistry. 2015 Jun 2;54(21):3392-9. doi: 10.1021/acs.biochem.5b00295. Epub 2015 May 18.
6
Biological contexts for DNA charge transport chemistry.
Curr Opin Chem Biol. 2008 Apr;12(2):229-37. doi: 10.1016/j.cbpa.2008.01.046. Epub 2008 Mar 17.
7
A perspective of biological supramolecular electron transfer.
Indian J Biochem Biophys. 1999 Dec;36(6):379-97.
8
Long-distance electron transfer through DNA.
Annu Rev Biochem. 2002;71:51-70. doi: 10.1146/annurev.biochem.71.083101.134037. Epub 2001 Nov 9.
9
Long-range DNA charge transport.
J Org Chem. 2003 Aug 22;68(17):6475-83. doi: 10.1021/jo030095y.
10
Double helix chemistry at a distance--but how?
Science. 1997 Mar 7;275(5305):1420-1. doi: 10.1126/science.275.5305.1420.

引用本文的文献

2
Effects of environmental noise on quantum charge diffusion in DNA sequences.
Sci Rep. 2025 May 20;15(1):17543. doi: 10.1038/s41598-025-02819-w.
3
Structure-Binding Relationship of 2-Amino-1,8-Naphthyridine Dimers: Role of Linkage Positions on DNA and RNA Recognition.
Chemistry. 2025 May 19;31(28):e202500425. doi: 10.1002/chem.202500425. Epub 2025 Apr 10.
4
Hole Transfer and the Resulting DNA Damage.
Biomolecules. 2024 Dec 30;15(1):29. doi: 10.3390/biom15010029.
5
The Avoidance of Purine Stretches by Cancer Mutations.
Int J Mol Sci. 2024 Oct 15;25(20):11050. doi: 10.3390/ijms252011050.
6
Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2404470121. doi: 10.1073/pnas.2404470121. Epub 2024 Oct 7.
8
DNA damage and repair in the nucleosome: insights from computational methods.
Biophys Rev. 2024 Mar 12;16(3):345-356. doi: 10.1007/s12551-024-01183-9. eCollection 2024 Jun.
9
What tunes guanine ionization potential in a nucleosome? An all-in-one systematic QM/MM assessment.
Biophys J. 2024 Sep 17;123(18):3100-3106. doi: 10.1016/j.bpj.2024.07.009. Epub 2024 Jul 10.

本文引用的文献

1
DNA Electrochemistry Shows DNMT1 Methyltransferase Hyperactivity in Colorectal Tumors.
Chem Biol. 2015 Jul 23;22(7):938-45. doi: 10.1016/j.chembiol.2015.05.019. Epub 2015 Jun 25.
2
Intermediate tunnelling-hopping regime in DNA charge transport.
Nat Chem. 2015 Mar;7(3):221-6. doi: 10.1038/nchem.2183.
3
Emerging critical roles of Fe-S clusters in DNA replication and repair.
Biochim Biophys Acta. 2015 Jun;1853(6):1253-71. doi: 10.1016/j.bbamcr.2015.01.018. Epub 2015 Feb 2.
4
DNA charge transport within the cell.
Biochemistry. 2015 Feb 3;54(4):962-73. doi: 10.1021/bi501520w. Epub 2015 Jan 21.
5
Oxidation of p53 through DNA charge transport involves a network of disulfides within the DNA-binding domain.
Biochemistry. 2015 Jan 27;54(3):932-41. doi: 10.1021/bi501424v. Epub 2015 Jan 13.
6
Label-free electrochemical detection of human methyltransferase from tumors.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):14985-9. doi: 10.1073/pnas.1417351111. Epub 2014 Oct 6.
7
DNA-mediated oxidation of p53.
Biochemistry. 2014 Jun 3;53(21):3467-75. doi: 10.1021/bi5003184. Epub 2014 May 22.
8
DNA-mediated signaling by proteins with 4Fe-4S clusters is necessary for genomic integrity.
J Am Chem Soc. 2014 Apr 30;136(17):6470-8. doi: 10.1021/ja501973c. Epub 2014 Apr 16.
9
DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection.
Langmuir. 2013 Dec 31;29(52):16141-9. doi: 10.1021/la403262v. Epub 2013 Dec 11.
10
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
Biochim Biophys Acta. 2014 Apr;1837(4):418-26. doi: 10.1016/j.bbabio.2013.10.004. Epub 2013 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验