Suppr超能文献

细胞运动的反幂律行为通过光学相干断层扫描波动光谱揭示了三维共培养中基质-上皮细胞的相互作用。

Inverse-power-law behavior of cellular motility reveals stromal-epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy.

作者信息

Oldenburg Amy L, Yu Xiao, Gilliss Thomas, Alabi Oluwafemi, Taylor Russell M, Troester Melissa A

机构信息

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7513; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295.

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7513.

出版信息

Optica. 2015 Oct 20;2(10):877-885. doi: 10.1364/OPTICA.2.000877. Epub 2015 Oct 9.

Abstract

The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively (<0.001) and negatively (<0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT.

摘要

已知乳腺癌的进展会受到局部微环境中基质细胞的影响。在此,我们研究了基质成纤维细胞对三维共培养类器官内乳腺上皮细胞原位运动(迁移能力)的影响,该影响是通过使用光学相干断层扫描(OCT)从散斑波动光谱推断得出的。与布朗运动不同,乳腺细胞运动呈现出反幂律波动光谱。我们引入了两种互补的度量来量化波动光谱:幂律指数和迁移能力幅度的新定义,这两者均与信号和位置无关。我们发现,在三维共培养中,幂律指数与基质细胞密度呈正相关(<0.001),而迁移能力幅度与基质细胞密度呈负相关(<0.01)。我们还展示了如何使用这些度量来可视化高光谱数据,以观察类器官内的异质性。这构成了一种利用OCT检测和成像细胞功能变化的简单而强大的工具。

相似文献

3
Longitudinal tracking of perfluorooctanoic acid exposure on mammary epithelial cell spheroids by dynamic optical coherence tomography.
Biomed Opt Express. 2024 Aug 8;15(9):5115-5127. doi: 10.1364/BOE.530775. eCollection 2024 Sep 1.
7
Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography.
Biophys J. 2016 Apr 26;110(8):1858-1868. doi: 10.1016/j.bpj.2016.03.014.
8
Tracking the invasion of breast cancer cells in paper-based 3D cultures by OCT motility analysis.
Biomed Opt Express. 2020 May 20;11(6):3181-3194. doi: 10.1364/BOE.382911. eCollection 2020 Jun 1.

引用本文的文献

1
Label-free volumetric imaging of porcine kidney tissue over extended areas using dynamic MHz-OCT.
Sci Rep. 2025 Sep 12;15(1):32426. doi: 10.1038/s41598-025-15032-6.
2
Experimental and numerical investigation of wavelength and resolution dependency of dynamic optical coherence tomography signals.
Biomed Opt Express. 2025 Jul 7;16(8):3084-3104. doi: 10.1364/BOE.564030. eCollection 2025 Aug 1.
3
Three-dimensional dynamic optical coherence tomography for breast tumor margin assessment.
Biomed Opt Express. 2025 Jul 7;16(8):3061-3074. doi: 10.1364/BOE.563044. eCollection 2025 Aug 1.
5
Non-destructive viability assessment of cancer cell spheroids using dynamic optical coherence tomography with trypan blue validation.
Biomed Opt Express. 2024 Oct 14;15(11):6370-6383. doi: 10.1364/BOE.533339. eCollection 2024 Nov 1.
6
Longitudinal tracking of perfluorooctanoic acid exposure on mammary epithelial cell spheroids by dynamic optical coherence tomography.
Biomed Opt Express. 2024 Aug 8;15(9):5115-5127. doi: 10.1364/BOE.530775. eCollection 2024 Sep 1.
8
Line-field dynamic optical coherence tomography platform for volumetric assessment of biological tissues.
Biomed Opt Express. 2024 Jun 7;15(7):4162-4175. doi: 10.1364/BOE.527797. eCollection 2024 Jul 1.
9
Compressed intracellular motility via non-uniform temporal sampling in dynamic optical coherence tomography.
J Biomed Opt. 2024 Jul;29(7):076002. doi: 10.1117/1.JBO.29.7.076002. Epub 2024 Jul 4.
10
Neural-network based high-speed volumetric dynamic optical coherence tomography.
Biomed Opt Express. 2024 Apr 19;15(5):3216-3239. doi: 10.1364/BOE.519964. eCollection 2024 May 1.

本文引用的文献

1
Biodynamic imaging of live porcine oocytes, zygotes and blastocysts for viability assessment in assisted reproductive technologies.
Biomed Opt Express. 2015 Feb 25;6(3):963-76. doi: 10.1364/BOE.6.000963. eCollection 2015 Mar 1.
2
Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy.
Cell. 2014 Aug 14;158(4):822-832. doi: 10.1016/j.cell.2014.06.051.
3
Medical hyperspectral imaging: a review.
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.
4
Phenotypic profiling of Raf inhibitors and mitochondrial toxicity in 3D tissue using biodynamic imaging.
J Biomol Screen. 2014 Apr;19(4):526-37. doi: 10.1177/1087057113516674. Epub 2013 Dec 20.
7
Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.
J Cereb Blood Flow Metab. 2013 Jun;33(6):819-25. doi: 10.1038/jcbfm.2013.20. Epub 2013 Feb 13.
8
Force-induced changes in subnuclear movement and rheology.
Biophys J. 2012 Dec 19;103(12):2423-31. doi: 10.1016/j.bpj.2012.10.039. Epub 2012 Dec 18.
9
Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture.
Biomed Opt Express. 2012 Nov 1;3(11):2825-41. doi: 10.1364/BOE.3.002825. Epub 2012 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验