Suppr超能文献

核苷酸添加前的开放复合物挤压导致大肠杆菌核糖体RNA启动子的异常转录起始位点。

Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters.

作者信息

Winkelman Jared T, Chandrangsu Pete, Ross Wilma, Gourse Richard L

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706.

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1787-95. doi: 10.1073/pnas.1522159113. Epub 2016 Mar 14.

Abstract

Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the -10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the -10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe(2+) cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended -10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is "scrunched" into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ.

摘要

大多数大肠杆菌启动子在 -10 六聚体下游 7 或 8 个核苷酸处起始转录,以嘌呤核苷酸开始,但一些启动子,包括核糖体 RNA 启动子 rrnB P1,在距离 -10 元件 9 个核苷酸处起始。我们使用生化和遗传学方法,包括对启动子进行突变分析、用 Fe(2+) 切割试验监测活性位点附近的模板链位置,以及用 Bpa 交联以氨基酸和核苷酸分辨率绘制开放复合物 DNA 的路径,来确定这个非典型 rrnB P1 起始位点的启动子和 RNA 聚合酶决定因素。我们发现几个启动子区域的突变会影响转录起始位点(TSS)的选择。特别是,我们表明鉴别区域与 σ 因子区域 1.2 之间以及扩展的 -10 元件与 σ 因子区域 3.0 之间缺乏强相互作用(先前已确定这是 rRNA 启动子正确调控的一个决定因素),对于这个异常的 TSS 也是必需的。我们发现 rrnB P1 启动子复合物单链转录泡中的 DNA 会扩展并“挤压”到 RNA 聚合酶的活性位点通道中,这与初始转录复合物中的情况类似。然而,在 rrnB P1 开放复合物中,挤压在 RNA 合成开始之前就发生了。我们发现挤压后的开放复合物表现出减少的流产产物合成,这表明挤压和异常的 TSS 选择通过增加启动子逃逸来促进 rRNA 启动子的非凡转录活性,有助于抵消因与 σ 因子弱相互作用而导致的启动子活性降低。

相似文献

1
Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1787-95. doi: 10.1073/pnas.1522159113. Epub 2016 Mar 14.
4
Open complex DNA scrunching: A key to transcription start site selection and promoter escape.
Bioessays. 2017 Feb;39(2). doi: 10.1002/bies.201600193. Epub 2017 Jan 4.
5
Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation.
J Biol Chem. 2003 Nov 21;278(47):47340-9. doi: 10.1074/jbc.M305430200. Epub 2003 Sep 17.
7
Mechanism of transcription initiation and promoter escape by . RNA polymerase.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3032-E3040. doi: 10.1073/pnas.1618675114. Epub 2017 Mar 27.
10
Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):E2899-905. doi: 10.1073/pnas.1603271113. Epub 2016 May 9.

引用本文的文献

1
The CarSR two-component system directly controls expression as a global regulator that senses bacterial coaggregation in .
J Bacteriol. 2025 Jun 24;207(6):e0052924. doi: 10.1128/jb.00529-24. Epub 2025 May 21.
2
Molecular basis of Streptomyces ECF σShbA factors transcribing principal σHrdB genes.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf339.
3
Assessing in vivo the impact of gene context on transcription through DNA supercoiling.
Nucleic Acids Res. 2023 Oct 13;51(18):9509-9521. doi: 10.1093/nar/gkad688.
5
Structural basis of three different transcription activation strategies adopted by a single regulator SoxS.
Nucleic Acids Res. 2022 Oct 28;50(19):11359-11373. doi: 10.1093/nar/gkac898.
6
Quantitative contribution of the spacer length in the supercoiling-sensitivity of bacterial promoters.
Nucleic Acids Res. 2022 Jul 22;50(13):7287-7297. doi: 10.1093/nar/gkac579.
7
Structural and mechanistic basis of σ-dependent transcriptional pausing.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2201301119. doi: 10.1073/pnas.2201301119. Epub 2022 Jun 2.
8
Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans.
Microbiol Spectr. 2022 Apr 27;10(2):e0012122. doi: 10.1128/spectrum.00121-22. Epub 2022 Mar 21.
9
Structural and mechanistic basis of reiterative transcription initiation.
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5). doi: 10.1073/pnas.2115746119.
10
The secondary messenger ppGpp interferes with cAMP-CRP regulon by promoting CRP acetylation in Escherichia coli.
PLoS One. 2021 Oct 27;16(10):e0259067. doi: 10.1371/journal.pone.0259067. eCollection 2021.

本文引用的文献

1
Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection.
Science. 2016 Mar 4;351(6277):1090-3. doi: 10.1126/science.aad6881.
3
Crosslink Mapping at Amino Acid-Base Resolution Reveals the Path of Scrunched DNA in Initial Transcribing Complexes.
Mol Cell. 2015 Sep 3;59(5):768-80. doi: 10.1016/j.molcel.2015.06.037. Epub 2015 Aug 6.
4
E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure.
J Mol Biol. 2015 Jul 31;427(15):2435-2450. doi: 10.1016/j.jmb.2015.05.024. Epub 2015 Jun 6.
5
Purification of bacterial RNA polymerase: tools and protocols.
Methods Mol Biol. 2015;1276:13-29. doi: 10.1007/978-1-4939-2392-2_2.
7
Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme.
J Biol Chem. 2014 Aug 29;289(35):24549-59. doi: 10.1074/jbc.M114.584037. Epub 2014 Jun 27.
10
Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit.
Cell. 2011 Dec 9;147(6):1257-69. doi: 10.1016/j.cell.2011.10.041. Epub 2011 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验