Suppr超能文献

5A肽对清道夫受体CD36的拮抗作用可预防小鼠慢性肾病进展,且与血压调节无关。

Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation.

作者信息

Souza Ana Carolina P, Bocharov Alexander V, Baranova Irina N, Vishnyakova Tatyana G, Huang Yuning G, Wilkins Kenneth J, Hu Xuzhen, Street Jonathan M, Alvarez-Prats Alejandro, Mullick Adam E, Patterson Amy P, Remaley Alan T, Eggerman Thomas L, Yuen Peter S T, Star Robert A

机构信息

Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA.

Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA.

出版信息

Kidney Int. 2016 Apr;89(4):809-22. doi: 10.1016/j.kint.2015.12.043.

Abstract

Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein A-I-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild-type to CD36 knockout mice and wild-type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild-type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild-type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreased renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression.

摘要

清道夫受体CD36参与了对心血管疾病和慢性肾脏病(CKD)至关重要的脂质代谢和炎症通路。目前很少有药物能够减缓CKD的进展。然而,载脂蛋白A-I模拟肽5A在体外可拮抗CD36。为了测试5A的疗效,并验证CD36在CKD中的作用,我们在一个类似于人类疾病的进行性CKD模型中,将野生型小鼠与CD36基因敲除小鼠以及接受5A治疗的野生型小鼠进行了比较。基因敲除小鼠和接受5A治疗的野生型小鼠在血压未改变的情况下,免受CKD进展的影响,并且与CKD相关的心血管风险替代标志物有所降低。用5A治疗并不能进一步保护CD36基因敲除小鼠免受CKD进展的影响,这表明CD36是其主要作用位点。在另一个肾纤维化模型中,接受5A治疗的野生型小鼠巨噬细胞浸润和间质纤维化较少。肽5A在肾脏中发挥抗炎作用,并降低了肾脏中炎性小体基因的表达。因此,CD36是CKD及其相关心血管危险因素的一个新的治疗靶点。肽5A可能是一种有前景的减缓CKD进展的新药。

相似文献

2
Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model.
Kidney Int. 2010 Dec;78(11):1136-53. doi: 10.1038/ki.2010.287. Epub 2010 Aug 25.
3
CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD.
J Am Soc Nephrol. 2009 Mar;20(3):495-505. doi: 10.1681/ASN.2008010009. Epub 2009 Feb 11.
6
The NLRP3 inflammasome promotes renal inflammation and contributes to CKD.
J Am Soc Nephrol. 2010 Oct;21(10):1732-44. doi: 10.1681/ASN.2010020143. Epub 2010 Aug 5.
7
CD36 in chronic kidney disease: novel insights and therapeutic opportunities.
Nat Rev Nephrol. 2017 Dec;13(12):769-781. doi: 10.1038/nrneph.2017.126. Epub 2017 Sep 18.
8
Palmitate aggravates proteinuria-induced cell death and inflammation via CD36-inflammasome axis in the proximal tubular cells of obese mice.
Am J Physiol Renal Physiol. 2018 Dec 1;315(6):F1720-F1731. doi: 10.1152/ajprenal.00536.2017. Epub 2018 Sep 19.
9
Oxalate, inflammasome, and progression of kidney disease.
Curr Opin Nephrol Hypertens. 2016 Jul;25(4):363-71. doi: 10.1097/MNH.0000000000000229.

引用本文的文献

2
Characteristics of Dyslipidemia in Primary Nephrotic Syndromes.
Cureus. 2025 May 14;17(5):e84077. doi: 10.7759/cureus.84077. eCollection 2025 May.
4
The role of redox signaling in mitochondria and endoplasmic reticulum regulation in kidney diseases.
Arch Toxicol. 2025 May;99(5):1865-1891. doi: 10.1007/s00204-025-04041-z. Epub 2025 Apr 11.
5
ACOT12, a novel factor in the pathogenesis of kidney fibrosis, modulates ACBD5.
Exp Mol Med. 2025 Feb;57(2):478-488. doi: 10.1038/s12276-025-01406-3. Epub 2025 Feb 13.
8
Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD).
J Clin Transl Endocrinol. 2024 Apr 2;36:100341. doi: 10.1016/j.jcte.2024.100341. eCollection 2024 Jun.

本文引用的文献

1
Cholesterol Metabolism in CKD.
Am J Kidney Dis. 2015 Dec;66(6):1071-82. doi: 10.1053/j.ajkd.2015.06.028. Epub 2015 Sep 1.
2
The macrophage phagocytic receptor CD36 promotes fibrogenic pathways on removal of apoptotic cells during chronic kidney injury.
Am J Pathol. 2015 Aug;185(8):2232-45. doi: 10.1016/j.ajpath.2015.04.016. Epub 2015 Jun 16.
3
CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.
J Biol Chem. 2015 Feb 20;290(8):4590-4603. doi: 10.1074/jbc.M114.627026. Epub 2015 Jan 1.
4
Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease.
Adv Chronic Kidney Dis. 2014 May;21(3):281-6. doi: 10.1053/j.ackd.2014.03.005.
5
Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease.
Nat Rev Nephrol. 2014 May;10(5):268-78. doi: 10.1038/nrneph.2014.49. Epub 2014 Apr 1.
6
Fibroblast growth factor-23 and cardiovascular disease in the general population: the Multi-Ethnic Study of Atherosclerosis.
Circ Heart Fail. 2014 May;7(3):409-17. doi: 10.1161/CIRCHEARTFAILURE.113.000952. Epub 2014 Mar 25.
7
Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.
N Engl J Med. 2013 Dec 26;369(26):2492-503. doi: 10.1056/NEJMoa1306033. Epub 2013 Nov 9.
8
Combined angiotensin inhibition for the treatment of diabetic nephropathy.
N Engl J Med. 2013 Nov 14;369(20):1892-903. doi: 10.1056/NEJMoa1303154. Epub 2013 Nov 9.
9
Fibroblast growth factor-23 and cardiovascular events in CKD.
J Am Soc Nephrol. 2014 Feb;25(2):349-60. doi: 10.1681/ASN.2013050465. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验