Dodson Paul D, Dreyer Jakob K, Jennings Katie A, Syed Emilie C J, Wade-Martins Richard, Cragg Stephanie J, Bolam J Paul, Magill Peter J
Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom; Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QX, United Kingdom;
Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark;
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2180-8. doi: 10.1073/pnas.1515941113. Epub 2016 Mar 21.
Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.
中脑多巴胺能神经元对于适当的自主运动至关重要,帕金森病中出现的主要运动障碍就体现了这一点。理解这种运动控制的基础需要了解不同类型多巴胺能神经元的放电如何与运动相关,以及这种活动在诸如纹状体等靶结构中是如何被解读的。通过记录和标记行为小鼠中的单个神经元,我们发现已识别的中脑多巴胺能神经元放电中短暂自发运动的表征具有细胞类型选择性。黑质致密部(SNc)中的大多数多巴胺能神经元,而非腹侧被盖区或黑质外侧部中的多巴胺能神经元,在其放电时通过暂停一致地代表自发运动的开始。计算模型显示,这些多巴胺能神经元与运动相关的放电可表现为纹状体多巴胺浓度和受体活性的快速而强烈的波动。纹状体中与运动相关的信号的确切性质取决于提供输入的多巴胺能神经元的类型、所支配的纹状体区域以及纹状体神经元表达的多巴胺受体类型。重要的是,在携带与人类帕金森病相关遗传负担的老年小鼠中,SNc多巴胺能神经元与运动精确相关的放电以及由此产生的纹状体多巴胺信号传导丧失。这些数据表明,不同的多巴胺能细胞类型对自发运动进行差异编码,并阐明了帕金森病早期其放电失调如何损害其效应器回路。