Mamoshina Polina, Vieira Armando, Putin Evgeny, Zhavoronkov Alex
Artificial Intelligence Research, Insilico Medicine, Inc, ETC, Johns Hopkins University , Baltimore, Maryland 21218, United States.
RedZebra Analytics , 1 Quality Court, London, WC2A 1HR, U.K.
Mol Pharm. 2016 May 2;13(5):1445-54. doi: 10.1021/acs.molpharmaceut.5b00982. Epub 2016 Mar 29.
Increases in throughput and installed base of biomedical research equipment led to a massive accumulation of -omics data known to be highly variable, high-dimensional, and sourced from multiple often incompatible data platforms. While this data may be useful for biomarker identification and drug discovery, the bulk of it remains underutilized. Deep neural networks (DNNs) are efficient algorithms based on the use of compositional layers of neurons, with advantages well matched to the challenges -omics data presents. While achieving state-of-the-art results and even surpassing human accuracy in many challenging tasks, the adoption of deep learning in biomedicine has been comparatively slow. Here, we discuss key features of deep learning that may give this approach an edge over other machine learning methods. We then consider limitations and review a number of applications of deep learning in biomedical studies demonstrating proof of concept and practical utility.
生物医学研究设备通量的增加和装机量的扩大,导致了大量组学数据的积累,这些数据具有高度变异性、高维度性,且来源于多个通常不兼容的数据平台。虽然这些数据可能有助于生物标志物识别和药物发现,但其中大部分仍未得到充分利用。深度神经网络(DNN)是基于神经元组成层使用的高效算法,其优势与组学数据所带来的挑战高度匹配。尽管在许多具有挑战性的任务中取得了领先成果,甚至超越了人类的准确性,但深度学习在生物医学中的应用相对较慢。在此,我们讨论深度学习的关键特征,这些特征可能使该方法相对于其他机器学习方法具有优势。然后,我们考虑其局限性,并回顾深度学习在生物医学研究中的一些应用,以证明其概念和实际效用。