Suppr超能文献

染色体重排的历史反映了酵母染色体的空间组织。

History of chromosome rearrangements reflects the spatial organization of yeast chromosomes.

作者信息

Khrameeva Ekaterina E, Fudenberg Geoffrey, Gelfand Mikhail S, Mirny Leonid A

机构信息

1 Institute for Information Transmission, Problems (the Kharkevich Institute), Russian Academy of Sciences, Bolshoy Karetny per. 19, build. 1, Moscow 127051, Russian Federation.

2 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, build. 3, Moscow 143026, Russian Federation.

出版信息

J Bioinform Comput Biol. 2016 Apr;14(2):1641002. doi: 10.1142/S021972001641002X. Epub 2016 Jan 28.

Abstract

Three-dimensional (3D) organization of genomes affects critical cellular processes such as transcription, replication, and deoxyribo nucleic acid (DNA) repair. While previous studies have investigated the natural role, the 3D organization plays in limiting a possible set of genomic rearrangements following DNA repair, the influence of specific organizational principles on this process, particularly over longer evolutionary time scales, remains relatively unexplored. In budding yeast S.cerevisiae, chromosomes are organized into a Rabl-like configuration, with clustered centromeres and telomeres tethered to the nuclear periphery. Hi-C data for S.cerevisiae show that a consequence of this Rabl-like organization is that regions equally distant from centromeres are more frequently in contact with each other, between arms of both the same and different chromosomes. Here, we detect rearrangement events in Saccharomyces species using an automatic approach, and observe increased rearrangement frequency between regions with higher contact frequencies. Together, our results underscore how specific principles of 3D chromosomal organization can influence evolutionary events.

摘要

基因组的三维(3D)组织影响着关键的细胞过程,如转录、复制和脱氧核糖核酸(DNA)修复。虽然先前的研究已经探讨了3D组织在限制DNA修复后可能出现的一系列基因组重排中所起的自然作用,但特定组织原则对这一过程的影响,尤其是在更长的进化时间尺度上,仍相对未被探索。在芽殖酵母酿酒酵母中,染色体被组织成一种类似拉布尔(Rabl)的构型,着丝粒和端粒聚集并附着在核膜上。酿酒酵母的Hi-C数据表明,这种类似拉布尔的组织形式的一个结果是,在同一条和不同染色体的臂之间,与着丝粒等距的区域彼此更频繁地接触。在这里,我们使用一种自动方法检测了酿酒酵母属物种中的重排事件,并观察到接触频率较高的区域之间重排频率增加。总之,我们的结果强调了3D染色体组织的特定原则如何能够影响进化事件。

相似文献

1
History of chromosome rearrangements reflects the spatial organization of yeast chromosomes.
J Bioinform Comput Biol. 2016 Apr;14(2):1641002. doi: 10.1142/S021972001641002X. Epub 2016 Jan 28.
2
The dynamic three-dimensional organization of the diploid yeast genome.
Elife. 2017 May 24;6:e23623. doi: 10.7554/eLife.23623.
3
The Rabl configuration limits topological entanglement of chromosomes in budding yeast.
Sci Rep. 2019 May 1;9(1):6795. doi: 10.1038/s41598-019-42967-4.
4
Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast .
Int J Mol Sci. 2021 Jan 14;22(2):786. doi: 10.3390/ijms22020786.
5
A three-dimensional model of the yeast genome.
Nature. 2010 May 20;465(7296):363-7. doi: 10.1038/nature08973. Epub 2010 May 2.
6
Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in .
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8445-8450. doi: 10.1073/pnas.1819585116. Epub 2019 Apr 8.
7
A predictive computational model of the dynamic 3D interphase yeast nucleus.
Curr Biol. 2012 Oct 23;22(20):1881-90. doi: 10.1016/j.cub.2012.07.069. Epub 2012 Aug 30.
8
Yeasty clocks: dating genomic changes in yeasts.
C R Biol. 2011 Aug-Sep;334(8-9):620-8. doi: 10.1016/j.crvi.2011.05.010. Epub 2011 Jul 1.
9
Haploinsufficiency and the sex chromosomes from yeasts to humans.
BMC Biol. 2011 Feb 28;9:15. doi: 10.1186/1741-7007-9-15.
10
Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus.
Yeast. 1998 Jul;14(10):923-33. doi: 10.1002/(SICI)1097-0061(199807)14:10<923::AID-YEA298>3.0.CO;2-I.

引用本文的文献

2
Targeting the chromatin structural changes of antitumor immunity.
J Pharm Anal. 2024 Apr;14(4):100905. doi: 10.1016/j.jpha.2023.11.012. Epub 2023 Nov 29.

本文引用的文献

1
Hi-C in Budding Yeast.
Cold Spring Harb Protoc. 2015 Jul 1;2015(7):649-61. doi: 10.1101/pdb.prot085209.
2
The Hitchhiker's guide to Hi-C analysis: practical guidelines.
Methods. 2015 Jan 15;72:65-75. doi: 10.1016/j.ymeth.2014.10.031. Epub 2014 Nov 6.
3
Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.
Nucleic Acids Res. 2014 Sep;42(15):9854-61. doi: 10.1093/nar/gku667. Epub 2014 Jul 23.
4
The 3D genome in transcriptional regulation and pluripotency.
Cell Stem Cell. 2014 Jun 5;14(6):762-75. doi: 10.1016/j.stem.2014.05.017.
5
The biogenesis of chromosome translocations.
Nat Cell Biol. 2014 Apr;16(4):293-300. doi: 10.1038/ncb2941.
6
Neighboring genes show interchromosomal colocalization after their separation.
Mol Biol Evol. 2014 May;31(5):1166-72. doi: 10.1093/molbev/msu065. Epub 2014 Feb 6.
7
Molecular biology. Finding the right partner in a 3D genome.
Science. 2013 Dec 13;342(6164):1333-4. doi: 10.1126/science.1246106.
8
Spatial dynamics of chromosome translocations in living cells.
Science. 2013 Aug 9;341(6146):660-4. doi: 10.1126/science.1237150.
9
The hierarchy of the 3D genome.
Mol Cell. 2013 Mar 7;49(5):773-82. doi: 10.1016/j.molcel.2013.02.011.
10
A predictive computational model of the dynamic 3D interphase yeast nucleus.
Curr Biol. 2012 Oct 23;22(20):1881-90. doi: 10.1016/j.cub.2012.07.069. Epub 2012 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验