Lueza Béranger, Rotolo Federico, Bonastre Julia, Pignon Jean-Pierre, Michiels Stefan
Gustave Roussy, Université Paris-Saclay, Service de biostatistique et d'épidémiologie, F-94805, Villejuif, France.
Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, F-94085, Villejuif, France.
BMC Med Res Methodol. 2016 Mar 29;16:37. doi: 10.1186/s12874-016-0137-z.
The difference in restricted mean survival time ([Formula: see text]), the area between two survival curves up to time horizon [Formula: see text], is often used in cost-effectiveness analyses to estimate the treatment effect in randomized controlled trials. A challenge in individual patient data (IPD) meta-analyses is to account for the trial effect. We aimed at comparing different methods to estimate the [Formula: see text] from an IPD meta-analysis.
We compared four methods: the area between Kaplan-Meier curves (experimental vs. control arm) ignoring the trial effect (Naïve Kaplan-Meier); the area between Peto curves computed at quintiles of event times (Peto-quintile); the weighted average of the areas between either trial-specific Kaplan-Meier curves (Pooled Kaplan-Meier) or trial-specific exponential curves (Pooled Exponential). In a simulation study, we varied the between-trial heterogeneity for the baseline hazard and for the treatment effect (possibly correlated), the overall treatment effect, the time horizon [Formula: see text], the number of trials and of patients, the use of fixed or DerSimonian-Laird random effects model, and the proportionality of hazards. We compared the methods in terms of bias, empirical and average standard errors. We used IPD from the Meta-Analysis of Chemotherapy in Nasopharynx Carcinoma (MAC-NPC) and its updated version MAC-NPC2 for illustration that included respectively 1,975 and 5,028 patients in 11 and 23 comparisons.
The Naïve Kaplan-Meier method was unbiased, whereas the Pooled Exponential and, to a much lesser extent, the Pooled Kaplan-Meier methods showed a bias with non-proportional hazards. The Peto-quintile method underestimated the [Formula: see text], except with non-proportional hazards at [Formula: see text]= 5 years. In the presence of treatment effect heterogeneity, all methods except the Pooled Kaplan-Meier and the Pooled Exponential with DerSimonian-Laird random effects underestimated the standard error of the [Formula: see text]. Overall, the Pooled Kaplan-Meier method with DerSimonian-Laird random effects formed the best compromise in terms of bias and variance. The [Formula: see text] estimated with the Pooled Kaplan-Meier method was 0.49 years (95% CI: [-0.06;1.03], p = 0.08) when comparing radiotherapy plus chemotherapy vs. radiotherapy alone in the MAC-NPC and 0.59 years (95% CI: [0.34;0.84], p < 0.0001) in the MAC-NPC2.
We recommend the Pooled Kaplan-Meier method with DerSimonian-Laird random effects to estimate the difference in restricted mean survival time from an individual-patient data meta-analysis.
受限平均生存时间([公式:见正文]),即直至时间范围[公式:见正文]两条生存曲线之间的面积,常用于成本效益分析以估计随机对照试验中的治疗效果。个体患者数据(IPD)荟萃分析中的一个挑战是考虑试验效应。我们旨在比较不同方法以从IPD荟萃分析中估计[公式:见正文]。
我们比较了四种方法:忽略试验效应的Kaplan-Meier曲线(试验组与对照组)之间的面积(朴素Kaplan-Meier法);在事件时间五分位数处计算的Peto曲线之间的面积(Peto-五分位数法);特定试验的Kaplan-Meier曲线(合并Kaplan-Meier法)或特定试验的指数曲线(合并指数法)之间面积的加权平均值。在一项模拟研究中,我们改变了基线风险和治疗效果(可能相关)的试验间异质性、总体治疗效果、时间范围[公式:见正文]、试验数量和患者数量、固定或DerSimonian-Laird随机效应模型的使用以及风险的比例性。我们从偏差、经验标准误差和平均标准误差方面比较这些方法。我们使用鼻咽癌化疗荟萃分析(MAC-NPC)及其更新版本MAC-NPC2的IPD进行说明,MAC-NPC分别包含11项比较中的1975例患者,MAC-NPC2包含23项比较中的5028例患者。
朴素Kaplan-Meier法无偏差,而合并指数法以及在小得多的程度上合并Kaplan-Meier法在风险不成比例时显示出偏差。Peto-五分位数法低估了[公式:见正文],除了在[公式:见正文]=5年时风险不成比例的情况。在存在治疗效果异质性时,除了合并Kaplan-Meier法以及采用DerSimonian-Laird随机效应的合并指数法外,所有方法都低估了[公式:见正文]的标准误差。总体而言,采用DerSimonian-Laird随机效应的合并Kaplan-Meier法在偏差和方差方面形成了最佳折衷。在MAC-NPC中比较放疗加化疗与单纯放疗时,采用合并Kaplan-Meier法估计的[公式:见正文]为0.49年(95%CI:[-0.06;1.03],p = 0.08),在MAC-NPC2中为0.59年(95%CI:[0.34;0.84],p < 0.0001)。
我们推荐采用DerSimonian-Laird随机效应的合并Kaplan-Meier法来从个体患者数据荟萃分析中估计受限平均生存时间的差异。