Suppr超能文献

转化生长因子-β受体1抑制通过减少宿主单核吞噬细胞激活来预防组织工程血管移植物的狭窄。

TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.

作者信息

Lee Yong-Ung, de Dios Ruiz-Rosado Juan, Mahler Nathan, Best Cameron A, Tara Shuhei, Yi Tai, Shoji Toshihiro, Sugiura Tadahisa, Lee Avione Y, Robledo-Avila Frank, Hibino Narutoshi, Pober Jordan S, Shinoka Toshiharu, Partida-Sanchez Santiago, Breuer Christopher K

机构信息

Tissue Engineering Program, Nationwide Children's Hospital, Columbus, Ohio, USA;

Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, Ohio, USA;

出版信息

FASEB J. 2016 Jul;30(7):2627-36. doi: 10.1096/fj.201500179R. Epub 2016 Apr 8.

Abstract

Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-β receptor 1 (TGF-βR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-βR1 inhibition on the host monocytes. Biodegradable TEVGs were implanted as inferior vena cava interposition conduits in 2 groups of C57BL/6 mice (n = 25/group): unseeded grafts and unseeded grafts with TGF-βR1 inhibitor systemic treatment for the first 2 wk. The TGF-βR1 inhibitor treatment effectively improved TEVG patency at 6 mo compared to the untreated control group (91.7 vs. 48%, P < 0.001), which is associated with a reduction in classic activation of mononuclear phagocytes. Consistent with these findings, the addition of rTGF-β to LPS/IFN-γ-stimulated monocytes enhanced secretion of inflammatory cytokines TNF-α, IL-12, and IL-6; this effect was blocked by TGF-βR1 inhibition (P < 0.0001). These findings suggest that the TGF-β signaling pathway contributes to TEVG stenosis by inducing classic activation of host monocytes. Furthermore, blocking monocyte activation by TGF-βR1 inhibition provides a viable strategy for preventing TEVG stenosis while maintaining neotissue formation.-Lee, Y.-U., de Dios Ruiz-Rosado, J., Mahler, N., Best, C. A., Tara, S., Yi, T., Shoji, T., Sugiura, T., Lee, A. Y., Robledo-Avila, F., Hibino, N., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.

摘要

血管狭窄是组织工程血管移植物(TEVG)长期疗效的关键问题。我们之前表明,移植物内宿主单核细胞的浸润和激活会导致血管狭窄,而抑制转化生长因子-β受体1(TGF-βR1)可以预防这种情况,但后一种作用主要归因于对间充质细胞增殖的抑制。在本研究中,我们评估了抑制TGF-βR1对宿主单核细胞的影响。将可生物降解的TEVG作为下腔静脉置换导管植入2组C57BL/6小鼠(每组n = 25只):未接种细胞的移植物和在最初2周进行TGF-βR1抑制剂全身治疗的未接种细胞的移植物。与未治疗的对照组相比,TGF-βR1抑制剂治疗在6个月时有效改善了TEVG的通畅率(91.7%对48%,P < 0.001),这与单核吞噬细胞的经典激活减少有关。与这些发现一致,向脂多糖/干扰素-γ刺激的单核细胞中添加重组TGF-β可增强炎性细胞因子肿瘤坏死因子-α、白细胞介素-12和白细胞介素-6的分泌;这种作用被TGF-βR1抑制所阻断(P < 0.0001)。这些发现表明,TGF-β信号通路通过诱导宿主单核细胞的经典激活促进TEVG狭窄。此外,通过抑制TGF-βR1来阻断单核细胞激活为预防TEVG狭窄同时维持新组织形成提供了一种可行的策略。——李,Y.-U.,德迪奥斯·鲁伊斯-罗萨多,J.,马勒,N.,贝斯特,C.A.,塔拉,S.,易,T.,庄司,T.,杉浦,T.,李,A.Y.,罗夫莱多-阿维拉,F.,日比野,N.,波伯,J.S.,筱野,T.,帕蒂达-桑切斯,S.,布鲁尔,C.K. 抑制转化生长因子-β受体1通过减少宿主单核吞噬细胞激活预防组织工程血管移植物狭窄

相似文献

2
Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts.
FASEB J. 2018 Jun 15;32(12):fj201800458. doi: 10.1096/fj.201800458.
3
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.
5
Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
PLoS One. 2016 Jul 28;11(7):e0158555. doi: 10.1371/journal.pone.0158555. eCollection 2016.
6
Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model.
Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):2003-10. doi: 10.1161/ATVBAHA.115.306027. Epub 2015 Jul 16.
7
Novel Association of miR-451 with the Incidence of TEVG Stenosis in a Murine Model.
Tissue Eng Part A. 2016 Jan;22(1-2):75-82. doi: 10.1089/ten.TEA.2014.0664. Epub 2015 Dec 17.
8
Implantation of inferior vena cava interposition graft in mouse model.
J Vis Exp. 2014 Jun 4(88):51632. doi: 10.3791/51632.
9
Tissue-engineered vascular grafts: does cell seeding matter?
J Pediatr Surg. 2010 Jun;45(6):1299-305. doi: 10.1016/j.jpedsurg.2010.02.102.
10
Zoledronate alters natural progression of tissue-engineered vascular grafts.
FASEB J. 2021 Oct;35(10):e21849. doi: 10.1096/fj.202001606RR.

引用本文的文献

2
Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts.
Cardiovasc Res. 2024 Jul 2;120(8):839-854. doi: 10.1093/cvr/cvae106.
3
Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations.
Front Bioeng Biotechnol. 2023 Jan 10;10:1097334. doi: 10.3389/fbioe.2022.1097334. eCollection 2022.
4
Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back.
Arterioscler Thromb Vasc Biol. 2023 Mar;43(3):399-409. doi: 10.1161/ATVBAHA.122.318236. Epub 2023 Jan 12.
5
Complications and management of functional single ventricle patients with Fontan circulation: From surgeon's point of view.
Front Cardiovasc Med. 2022 Jul 29;9:917059. doi: 10.3389/fcvm.2022.917059. eCollection 2022.
6
Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft.
Adv Healthc Mater. 2022 Jun;11(12):e2200045. doi: 10.1002/adhm.202200045. Epub 2022 Mar 27.
7
Imatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft.
JVS Vasc Sci. 2020;1:57-67. doi: 10.1016/j.jvssci.2020.03.002. Epub 2020 Apr 11.
8
Spontaneous reversal of stenosis in tissue-engineered vascular grafts.
Sci Transl Med. 2020 Apr 1;12(537). doi: 10.1126/scitranslmed.aax6919.
9
A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development.
Integr Biol (Camb). 2020 Apr 14;12(3):47-63. doi: 10.1093/intbio/zyaa004.

本文引用的文献

1
TGFβR1 inhibition blocks the formation of stenosis in tissue-engineered vascular grafts.
J Am Coll Cardiol. 2015 Feb 10;65(5):512-4. doi: 10.1016/j.jacc.2014.08.057.
2
SnoN as a novel negative regulator of TGF-β/Smad signaling: a target for tailoring organ fibrosis.
Am J Physiol Heart Circ Physiol. 2015 Jan 15;308(2):H75-82. doi: 10.1152/ajpheart.00453.2014. Epub 2014 Nov 7.
3
Implantation of inferior vena cava interposition graft in mouse model.
J Vis Exp. 2014 Jun 4(88):51632. doi: 10.3791/51632.
4
Heterogeneous susceptibility of valve endothelial cells to mesenchymal transformation in response to TNFα.
Ann Biomed Eng. 2014 Jan;42(1):149-61. doi: 10.1007/s10439-013-0894-3. Epub 2013 Aug 27.
7
Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells.
Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):121-30. doi: 10.1161/ATVBAHA.112.300504. Epub 2012 Oct 25.
8
Role of angiotensin II in the brain inflammatory events during experimental diabetes in rats.
Brain Res. 2012 May 9;1453:64-76. doi: 10.1016/j.brainres.2012.03.021. Epub 2012 Mar 15.
9
Losartan prevents the development of the pro-inflammatory monocytes CD14+CD16+ in haemodialysis patients.
Nephrol Dial Transplant. 2012 Jul;27(7):2907-12. doi: 10.1093/ndt/gfr767. Epub 2012 Jan 13.
10
Protective and pathogenic functions of macrophage subsets.
Nat Rev Immunol. 2011 Oct 14;11(11):723-37. doi: 10.1038/nri3073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验