Suppr超能文献

丁香假单胞菌III型分泌效应蛋白的HopF家族。

The HopF family of Pseudomonas syringae type III secreted effectors.

作者信息

Lo Timothy, Koulena Noushin, Seto Derek, Guttman David S, Desveaux Darrell

机构信息

Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2.

Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.

出版信息

Mol Plant Pathol. 2017 Apr;18(3):457-468. doi: 10.1111/mpp.12412. Epub 2016 Jun 9.

Abstract

Pseudomonas syringae is a bacterial phytopathogen that utilizes the type III secretion system to inject effector proteins into plant host cells. Pseudomonas syringae can infect a wide range of plant hosts, including agronomically important crops such as tomatoes and beans. The ability of P. syringae to infect such numerous hosts is caused, in part, by the diversity of effectors employed by this phytopathogen. Over 60 different effector families exist in P. syringae; one such family is HopF, which contains over 100 distinct alleles. Despite this diversity, research has focused on only two members of this family: HopF1 from P. syringae pathovar phaseolicola 1449B and HopF2 from P. syringae pathovar tomato DC3000. In this study, we review the research on HopF family members, including their host targets and molecular mechanisms of immunity suppression, and their enzymatic function. We also provide a phylogenetic analysis of this expanding effector family which provides a basis for a proposed nomenclature to guide future research. The extensive genetic diversity that exists within the HopF family presents a great opportunity to study how functional diversification on an effector family contributes to host specialization.

摘要

丁香假单胞菌是一种细菌性植物病原体,它利用III型分泌系统将效应蛋白注入植物宿主细胞。丁香假单胞菌能感染多种植物宿主,包括番茄和豆类等具有重要农业经济价值的作物。丁香假单胞菌能够感染如此众多宿主的能力,部分原因在于这种植物病原体所使用的效应蛋白的多样性。丁香假单胞菌中存在60多个不同的效应蛋白家族;其中一个家族是HopF,它包含100多个不同的等位基因。尽管存在这种多样性,但研究仅聚焦于该家族的两个成员:来自菜豆丁香假单胞菌1449B菌株的HopF1和来自番茄丁香假单胞菌DC3000菌株的HopF2。在本研究中,我们综述了关于HopF家族成员的研究,包括它们的宿主靶点、免疫抑制的分子机制以及它们的酶功能。我们还对这个不断扩大的效应蛋白家族进行了系统发育分析,为提出的命名法提供了基础,以指导未来的研究。HopF家族中存在的广泛遗传多样性为研究效应蛋白家族的功能多样化如何导致宿主专一化提供了绝佳机会。

相似文献

1
The HopF family of Pseudomonas syringae type III secreted effectors.
Mol Plant Pathol. 2017 Apr;18(3):457-468. doi: 10.1111/mpp.12412. Epub 2016 Jun 9.
4
The HopPtoF locus of Pseudomonas syringae pv. tomato DC3000 encodes a type III chaperone and a cognate effector.
Mol Plant Microbe Interact. 2004 May;17(5):447-55. doi: 10.1094/MPMI.2004.17.5.447.
8
Diversity, Evolution, and Function of Effectoromes.
Annu Rev Phytopathol. 2022 Aug 26;60:211-236. doi: 10.1146/annurev-phyto-021621-121935. Epub 2022 May 10.
10
MAPping the Function of Phytopathogen Effectors.
Cell Host Microbe. 2016 Jan 13;19(1):7-9. doi: 10.1016/j.chom.2015.12.014.

引用本文的文献

1
Membrane vesicle engineering with "à la carte" bacterial-immunogenic molecules for organism-free plant vaccination.
Microb Biotechnol. 2023 Dec;16(12):2223-2235. doi: 10.1111/1751-7915.14323. Epub 2023 Aug 2.
2
Molecular and Genomic Characterization of the Phylogroup 4: An Emerging Pathogen of and .
Microorganisms. 2022 Mar 25;10(4):707. doi: 10.3390/microorganisms10040707.
5
Host Range Determinants of Pathovars of Woody Hosts Revealed by Comparative Genomics and Cross-Pathogenicity Tests.
Front Plant Sci. 2020 Jul 2;11:973. doi: 10.3389/fpls.2020.00973. eCollection 2020.
6
Natural Variation in Virulence of Isolates That Cause Bacterial Fruit Blotch in Watermelon, Depending on Infection Routes.
Plant Pathol J. 2020 Feb;36(1):29-42. doi: 10.5423/PPJ.OA.10.2019.0254. Epub 2020 Feb 1.
7
pv. Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Complex.
Front Plant Sci. 2019 May 8;10:570. doi: 10.3389/fpls.2019.00570. eCollection 2019.
8
In planta proximity dependent biotin identification (BioID).
Sci Rep. 2018 Jun 15;8(1):9212. doi: 10.1038/s41598-018-27500-3.
9
pv. Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in .
Front Plant Sci. 2017 Dec 20;8:2157. doi: 10.3389/fpls.2017.02157. eCollection 2017.
10
Behind the lines-actions of bacterial type III effector proteins in plant cells.
FEMS Microbiol Rev. 2016 Nov 1;40(6):894-937. doi: 10.1093/femsre/fuw026.

本文引用的文献

1
Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors.
Curr Opin Microbiol. 2016 Feb;29:49-55. doi: 10.1016/j.mib.2015.10.006. Epub 2015 Nov 18.
2
Acetylation of an NB-LRR Plant Immune-Effector Complex Suppresses Immunity.
Cell Rep. 2015 Nov 24;13(8):1670-82. doi: 10.1016/j.celrep.2015.10.029. Epub 2015 Nov 12.
3
The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity.
PLoS One. 2014 Dec 11;9(12):e114921. doi: 10.1371/journal.pone.0114921. eCollection 2014.
4
Draft Genome Sequence of Erwinia mallotivora BT-MARDI, Causative Agent of Papaya Dieback Disease.
Genome Announc. 2014 May 8;2(3):e00375-14. doi: 10.1128/genomeA.00375-14.
6
The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1.
Plant J. 2014 Jan;77(2):235-45. doi: 10.1111/tpj.12381. Epub 2013 Dec 9.
7
Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors.
PLoS Pathog. 2013 Oct;9(10):e1003715. doi: 10.1371/journal.ppat.1003715. Epub 2013 Oct 31.
8
The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18722-7. doi: 10.1073/pnas.1315520110. Epub 2013 Oct 29.
9
AvrRpm1 missense mutations weakly activate RPS2-mediated immune response in Arabidopsis thaliana.
PLoS One. 2012;7(8):e42633. doi: 10.1371/journal.pone.0042633. Epub 2012 Aug 6.
10
Top 10 plant pathogenic bacteria in molecular plant pathology.
Mol Plant Pathol. 2012 Aug;13(6):614-29. doi: 10.1111/j.1364-3703.2012.00804.x. Epub 2012 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验