Suppr超能文献

磷脂酶Cδ4调节小鼠的冷敏感性。

Phospholipase C δ4 regulates cold sensitivity in mice.

作者信息

Yudin Yevgen, Lutz Brianna, Tao Yuan-Xiang, Rohacs Tibor

机构信息

Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA.

Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA.

出版信息

J Physiol. 2016 Jul 1;594(13):3609-28. doi: 10.1113/JP272321. Epub 2016 May 29.

Abstract

KEY POINTS

The cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels are thought to be regulated by phospholipase C (PLC), but neither the specific PLC isoform nor the in vivo relevance of this regulation has been established. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 channels in vivo. We show that in small PLCδ4(-/-) TRPM8-positive dorsal root ganglion neurons cold, menthol and WS-12, a selective TRPM8 agonist, evoked significantly larger currents than in wild-type neurons, and action potential frequencies induced by menthol or by current injections were also higher in PLCδ4(-/-) neurons. PLCδ4(-/-) mice showed increased behavioural responses to evaporative cooling, and this effect was inhibited by a TRPM8 antagonist; behavioural responses to heat and mechanical stimuli were not altered. We provide evidence for the involvement of a specific PLC isoform in the regulation of cold sensitivity in mice by regulating TRPM8 activity.

ABSTRACT

The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental low temperatures. Ca(2+) -induced activation of phospholipase C (PLC) has been implied in the regulation of TRPM8 channels during menthol- and cold-induced desensitization in vitro. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 in sensory dorsal root ganglion (DRG) neurons. We identified two TRPM8-positive neuronal subpopulations, based on their cell body size. Most TRPM8-positive small neurons also responded to capsaicin, and had significantly larger menthol-induced inward current densities than medium-large cells, most of which did not respond to capsaicin. Small, but not medium-large, PLCδ4(-/-) neurons showed significantly larger currents induced by cold, menthol or WS-12, a specific TRPM8 agonist, compared to wild-type (WT) neurons, but TRPM8 protein levels were not different between the two groups. In current-clamp experiments small neurons had more depolarized resting membrane potentials, and required smaller current injections to generate action potentials (APs) than medium-large cells. In small PLCδ4(-/-) neurons, menthol application induced larger depolarizations and generation of APs with frequencies significantly higher compared to WT neurons. In behavioural experiments PLCδ4(-/-) mice showed greater sensitivity to evaporative cooling by acetone than control animals. Pretreatment with the TRPM8 antagonist PBMC reduced cold-induced responses, and the effect was more pronounced in the PLCδ4(-/-) group. Heat and mechanical sensitivity of the PLCδ4(-/-) mice was not different from WT animals. Our data support the involvement of PLCδ4 in the regulation of TRPM8 channel activity in vivo.

摘要

关键点

冷敏和薄荷醇激活的瞬时受体电位香草酸亚型8(TRPM8)通道被认为受磷脂酶C(PLC)调节,但具体的PLC亚型以及这种调节在体内的相关性尚未明确。在此,我们确定PLCδ4是体内参与TRPM8通道调节的关键PLC亚型。我们发现,在小型PLCδ4基因敲除(-/-)的TRPM8阳性背根神经节神经元中,冷刺激、薄荷醇和选择性TRPM8激动剂WS-12诱发的电流显著大于野生型神经元,并且薄荷醇或电流注射诱导的动作电位频率在PLCδ4(-/-)神经元中也更高。PLCδ4(-/-)小鼠对蒸发冷却的行为反应增强,且这种效应被TRPM8拮抗剂抑制;对热和机械刺激的行为反应未改变。我们提供了证据表明特定的PLC亚型通过调节TRPM8活性参与小鼠冷敏感性的调节。

摘要

瞬时受体电位香草酸亚型8(TRPM8)离子通道是环境低温的主要感受器。在体外薄荷醇和冷诱导的脱敏过程中,Ca(2+)诱导的磷脂酶C(PLC)激活被认为参与TRPM8通道的调节。在此,我们确定PLCδ4是感觉背根神经节(DRG)神经元中参与TRPM8调节的关键PLC亚型。基于细胞体大小,我们鉴定出两个TRPM8阳性神经元亚群。大多数TRPM8阳性小神经元也对辣椒素有反应,并且薄荷醇诱导的内向电流密度显著大于中大型细胞,其中大多数对辣椒素无反应。与野生型(WT)神经元相比,小型而非中大型的PLCδ4(-/-)神经元对冷、薄荷醇或特异性TRPM8激动剂WS-12诱导的电流显著更大,但两组之间TRPM8蛋白水平无差异。在电流钳实验中,小神经元的静息膜电位去极化程度更高,并且与中大型细胞相比,产生动作电位(AP)所需的电流注射更小。在小型PLCδ4(-/-)神经元中,应用薄荷醇诱导的去极化更大,并且产生的AP频率显著高于WT神经元。在行为实验中,PLCδ4(-/-)小鼠对丙酮蒸发冷却的敏感性高于对照动物。用TRPM8拮抗剂PBMC预处理可降低冷诱导的反应,且该效应在PLCδ4(-/-)组中更明显。PLCδ4(-/-)小鼠的热敏感性和机械敏感性与WT动物无差异。我们的数据支持PLCδ4参与体内TRPM8通道活性的调节。

相似文献

1
Phospholipase C δ4 regulates cold sensitivity in mice.
J Physiol. 2016 Jul 1;594(13):3609-28. doi: 10.1113/JP272321. Epub 2016 May 29.
3
Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate.
J Biol Chem. 2009 Jan 16;284(3):1570-82. doi: 10.1074/jbc.M807270200. Epub 2008 Nov 18.
5
TRPA1 expression levels and excitability brake by K channels influence cold sensitivity of TRPA1-expressing neurons.
Neuroscience. 2017 Jun 14;353:76-86. doi: 10.1016/j.neuroscience.2017.04.001. Epub 2017 Apr 10.
6
Visualizing cold spots: TRPM8-expressing sensory neurons and their projections.
J Neurosci. 2008 Jan 16;28(3):566-75. doi: 10.1523/JNEUROSCI.3976-07.2008.
7
The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity.
Mol Pain. 2010 Jan 21;6:4. doi: 10.1186/1744-8069-6-4.
8
The role of TRPM8 in the Guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist.
Eur J Pharmacol. 2014 Oct 5;740:398-409. doi: 10.1016/j.ejphar.2014.07.022. Epub 2014 Jul 21.
10
Chronic morphine regulates TRPM8 channels via MOR-PKCβ signaling.
Mol Brain. 2020 Apr 14;13(1):61. doi: 10.1186/s13041-020-00599-0.

引用本文的文献

1
Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1.
Korean J Physiol Pharmacol. 2023 Mar 1;27(2):187-196. doi: 10.4196/kjpp.2023.27.2.187.
3
Anti-contactin-1 Antibodies Affect Surface Expression and Sodium Currents in Dorsal Root Ganglia.
Neurol Neuroimmunol Neuroinflamm. 2021 Aug 24;8(5). doi: 10.1212/NXI.0000000000001056. Print 2021 Sep.
4
Oxaliplatin Causes Transient Changes in TRPM8 Channel Activity.
Int J Mol Sci. 2021 May 7;22(9):4962. doi: 10.3390/ijms22094962.
5
Methods to study phosphoinositide regulation of ion channels.
Methods Enzymol. 2021;652:49-79. doi: 10.1016/bs.mie.2021.01.025. Epub 2021 Mar 4.
6
The cool things to know about TRPM8!
Channels (Austin). 2020 Dec;14(1):413-420. doi: 10.1080/19336950.2020.1841419.
7
The Sensory Coding of Warm Perception.
Neuron. 2020 Jun 3;106(5):830-841.e3. doi: 10.1016/j.neuron.2020.02.035. Epub 2020 Mar 23.
8
Regulation of the cold-sensing TRPM8 channels by phosphoinositides and G-coupled receptors.
Channels (Austin). 2020 Dec;14(1):79-86. doi: 10.1080/19336950.2020.1734266.
9
Long-term imaging of dorsal root ganglia in awake behaving mice.
Nat Commun. 2019 Jul 12;10(1):3087. doi: 10.1038/s41467-019-11158-0.
10
Sensitizes TRPM8 to Inhibition by PI(4,5)P Depletion upon Receptor Activation.
J Neurosci. 2019 Jul 31;39(31):6067-6080. doi: 10.1523/JNEUROSCI.2304-18.2019. Epub 2019 May 24.

本文引用的文献

1
Phosphoinositide regulation of TRPV1 revisited.
Pflugers Arch. 2015 Sep;467(9):1851-69. doi: 10.1007/s00424-015-1695-3. Epub 2015 Mar 11.
2
Defining the nociceptor transcriptome.
Front Mol Neurosci. 2014 Nov 11;7:87. doi: 10.3389/fnmol.2014.00087. eCollection 2014.
3
Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing.
Nat Neurosci. 2015 Jan;18(1):145-53. doi: 10.1038/nn.3881. Epub 2014 Nov 24.
4
A dynamic set point for thermal adaptation requires phospholipase C-mediated regulation of TRPM8 in vivo.
Pain. 2014 Oct;155(10):2124-33. doi: 10.1016/j.pain.2014.08.001. Epub 2014 Aug 7.
5
Phosphoinositide regulation of TRP channels.
Handb Exp Pharmacol. 2014;223:1143-76. doi: 10.1007/978-3-319-05161-1_18.
7
TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain.
Pain. 2013 Oct;154(10):2169-2177. doi: 10.1016/j.pain.2013.06.043. Epub 2013 Jun 29.
8
A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons.
Nat Neurosci. 2013 Aug;16(8):1024-31. doi: 10.1038/nn.3438. Epub 2013 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验