Suppr超能文献

铜稳态作为SOD1突变型肌萎缩侧索硬化症的治疗靶点

Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations.

作者信息

Tokuda Eiichi, Furukawa Yoshiaki

机构信息

Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan.

出版信息

Int J Mol Sci. 2016 Apr 28;17(5):636. doi: 10.3390/ijms17050636.

Abstract

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease affecting both upper and lower motor neurons, and currently, there is no cure or effective treatment. Mutations in a gene encoding a ubiquitous antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1), have been first identified as a cause of familial forms of ALS. It is widely accepted that mutant SOD1 proteins cause the disease through a gain in toxicity but not through a loss of its physiological function. SOD1 is a major copper-binding protein and regulates copper homeostasis in the cell; therefore, a toxicity of mutant SOD1 could arise from the disruption of copper homeostasis. In this review, we will briefly review recent studies implying roles of copper homeostasis in the pathogenesis of SOD1-ALS and highlight the therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS.

摘要

肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,会影响上下运动神经元,目前尚无治愈方法或有效治疗手段。编码一种普遍存在的抗氧化酶——铜锌超氧化物歧化酶(SOD1)的基因突变,最初被确定为家族性ALS的病因。人们普遍认为,突变的SOD1蛋白通过毒性增加而非生理功能丧失导致疾病。SOD1是一种主要的铜结合蛋白,调节细胞内的铜稳态;因此,突变SOD1的毒性可能源于铜稳态的破坏。在这篇综述中,我们将简要回顾最近暗示铜稳态在SOD1-ALS发病机制中作用的研究,并重点介绍针对铜稳态的药理学和基因调控以改变SOD1-ALS病理过程的治疗干预措施。

相似文献

1
Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations.
Int J Mol Sci. 2016 Apr 28;17(5):636. doi: 10.3390/ijms17050636.
2
A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis.
Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt A):2119-2130. doi: 10.1016/j.bbadis.2018.03.015. Epub 2018 Mar 16.
3
Zn II(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism.
Neurobiol Dis. 2015 Sep;81:20-4. doi: 10.1016/j.nbd.2015.02.023. Epub 2015 Mar 10.
4
Metal-deficient SOD1 in amyotrophic lateral sclerosis.
J Mol Med (Berl). 2015 May;93(5):481-7. doi: 10.1007/s00109-015-1273-3. Epub 2015 Mar 11.
5
SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS.
Adv Biol Regul. 2016 Jan;60:95-104. doi: 10.1016/j.jbior.2015.10.006. Epub 2015 Oct 31.
8
Does wild-type Cu/Zn-superoxide dismutase have pathogenic roles in amyotrophic lateral sclerosis?
Transl Neurodegener. 2020 Aug 19;9(1):33. doi: 10.1186/s40035-020-00209-y.

引用本文的文献

1
Deuterium trafficking, mitochondrial dysfunction, copper homeostasis, and neurodegenerative disease.
Front Mol Biosci. 2025 Jul 22;12:1639327. doi: 10.3389/fmolb.2025.1639327. eCollection 2025.
2
A primer on copper biology in the brain.
Neurobiol Dis. 2025 Aug;212:106974. doi: 10.1016/j.nbd.2025.106974. Epub 2025 May 23.
3
Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS.
Front Mol Neurosci. 2024 Jul 9;17:1408159. doi: 10.3389/fnmol.2024.1408159. eCollection 2024.
4
Newly Synthesized Indolylacetic Derivatives Reduce Tumor Necrosis Factor-Mediated Neuroinflammation and Prolong Survival in Amyotrophic Lateral Sclerosis Mice.
ACS Pharmacol Transl Sci. 2024 Jun 22;7(7):1996-2005. doi: 10.1021/acsptsci.4c00098. eCollection 2024 Jul 12.
5
Role of copper in central nervous system physiology and pathology.
Neural Regen Res. 2025 Apr 1;20(4):1058-1068. doi: 10.4103/NRR.NRR-D-24-00110. Epub 2024 May 17.
7
Towards Understanding Neurodegenerative Diseases: Insights from .
Int J Mol Sci. 2023 Dec 28;25(1):443. doi: 10.3390/ijms25010443.
8
Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds.
Curr Neuropharmacol. 2024;22(10):1650-1671. doi: 10.2174/1570159X22666231103085859.
10
How metals fuel fungal virulence, yet promote anti-fungal immunity.
Dis Model Mech. 2023 Oct 1;16(10). doi: 10.1242/dmm.050393. Epub 2023 Oct 31.

本文引用的文献

2
Excitotoxicity in ALS: Overstimulation, or overreaction?
Exp Neurol. 2016 Jan;275 Pt 1:162-71. doi: 10.1016/j.expneurol.2015.09.019. Epub 2015 Nov 13.
3
The unfolded protein response in neurodegenerative diseases: a neuropathological perspective.
Acta Neuropathol. 2015 Sep;130(3):315-31. doi: 10.1007/s00401-015-1462-8. Epub 2015 Jul 26.
4
Oxidative Stress in Neurodegenerative Diseases.
Mol Neurobiol. 2016 Aug;53(6):4094-4125. doi: 10.1007/s12035-015-9337-5. Epub 2015 Jul 22.
5
Increased oxidative stress is related to disease severity in the ALS motor cortex: A PET study.
Neurology. 2015 May 19;84(20):2033-9. doi: 10.1212/WNL.0000000000001588. Epub 2015 Apr 22.
7
X-linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron.
J Pathol. 2015 Jun;236(2):241-50. doi: 10.1002/path.4511. Epub 2015 Mar 3.
8
Autophagy in neuronal cells: general principles and physiological and pathological functions.
Acta Neuropathol. 2015 Mar;129(3):337-62. doi: 10.1007/s00401-014-1361-4. Epub 2014 Nov 4.
9
The phenotypic variability of amyotrophic lateral sclerosis.
Nat Rev Neurol. 2014 Nov;10(11):661-70. doi: 10.1038/nrneurol.2014.184. Epub 2014 Oct 14.
10
Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control.
Brain Res. 2015 May 14;1607:36-46. doi: 10.1016/j.brainres.2014.09.065. Epub 2014 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验