Suppr超能文献

抗菌药物联合使用:源自多靶点机制模型的 Bliss 独立性和 Loewe 加和性

Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models.

作者信息

Baeder Desiree Y, Yu Guozhi, Hozé Nathanaël, Rolff Jens, Regoes Roland R

机构信息

Institute of Integrative Biology, ETH Zurich, Universitätsstrße 16, 8092 Zurich, Switzerland

Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0294.

Abstract

Antimicrobial peptides (AMPs) and antibiotics reduce the net growth rate of bacterial populations they target. It is relevant to understand if effects of multiple antimicrobials are synergistic or antagonistic, in particular for AMP responses, because naturally occurring responses involve multiple AMPs. There are several competing proposals describing how multiple types of antimicrobials add up when applied in combination, such as Loewe additivity or Bliss independence. These additivity terms are defined ad hoc from abstract principles explaining the supposed interaction between the antimicrobials. Here, we link these ad hoc combination terms to a mathematical model that represents the dynamics of antimicrobial molecules hitting targets on bacterial cells. In this multi-hit model, bacteria are killed when a certain number of targets are hit by antimicrobials. Using this bottom-up approach reveals that Bliss independence should be the model of choice if no interaction between antimicrobial molecules is expected. Loewe additivity, on the other hand, describes scenarios in which antimicrobials affect the same components of the cell, i.e. are not acting independently. While our approach idealizes the dynamics of antimicrobials, it provides a conceptual underpinning of the additivity terms. The choice of the additivity term is essential to determine synergy or antagonism of antimicrobials.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

摘要

抗菌肽(AMPs)和抗生素会降低它们所靶向的细菌群体的净生长速率。了解多种抗菌剂的作用是协同还是拮抗至关重要,特别是对于AMP反应而言,因为自然发生的反应涉及多种AMP。有几种相互竞争的提议描述了多种类型的抗菌剂联合使用时如何累加,例如洛伊相加性或布利斯独立性。这些相加性术语是根据解释抗菌剂之间假定相互作用的抽象原则临时定义的。在这里,我们将这些临时组合术语与一个数学模型联系起来,该模型表示抗菌分子作用于细菌细胞靶点的动力学。在这个多靶点模型中,当一定数量的靶点被抗菌剂击中时,细菌就会被杀死。采用这种自下而上的方法表明,如果预计抗菌分子之间没有相互作用,那么布利斯独立性应该是首选模型。另一方面,洛伊相加性描述了抗菌剂影响细胞相同成分的情况,即它们并非独立起作用。虽然我们的方法将抗菌剂的动力学理想化了,但它为相加性术语提供了概念基础。相加性术语的选择对于确定抗菌剂的协同或拮抗作用至关重要。本文是主题为“节肢动物抗菌肽的进化生态学”特刊的一部分。

相似文献

1
Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models.
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0294.
2
Bacterial strategies of resistance to antimicrobial peptides.
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0292.
3
Perspectives on the evolutionary ecology of arthropod antimicrobial peptides.
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0297.
4
Diversity, evolution and medical applications of insect antimicrobial peptides.
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0290.
6
Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions.
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0295.
8
Mathematical formulation of additivity for antimicrobial agents.
Diagn Microbiol Infect Dis. 2006 Aug;55(4):319-25. doi: 10.1016/j.diagmicrobio.2006.01.024. Epub 2006 Apr 19.
9
Additivity of inhibitory effects in multidrug combinations.
Nat Microbiol. 2018 Dec;3(12):1339-1345. doi: 10.1038/s41564-018-0252-1. Epub 2018 Oct 15.
10
Additive Dose Response Models: Defining Synergy.
Front Pharmacol. 2019 Nov 26;10:1384. doi: 10.3389/fphar.2019.01384. eCollection 2019.

引用本文的文献

2
Resolving discrepancies between chimeric and multiplicative measures of higher-order epistasis.
Nat Commun. 2025 Feb 17;16(1):1711. doi: 10.1038/s41467-025-56986-5.
3
Synergistic combinations of for myocardial infarction treatment: network pharmacology and quadratic optimization approach.
Front Pharmacol. 2024 Dec 9;15:1466208. doi: 10.3389/fphar.2024.1466208. eCollection 2024.
4
Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in .
Microlife. 2024 Oct 15;5:uqae021. doi: 10.1093/femsml/uqae021. eCollection 2024.
5
The many dimensions of combination therapy: How to combine antibiotics to limit resistance evolution.
Evol Appl. 2024 Aug 2;17(8):e13764. doi: 10.1111/eva.13764. eCollection 2024 Aug.
6
Paclitaxel and Carboplatin in Combination with Low-intensity Pulsed Ultrasound for Glioblastoma.
Clin Cancer Res. 2024 Apr 15;30(8):1619-1629. doi: 10.1158/1078-0432.CCR-23-2367.
7
Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro.
PLoS One. 2024 Jan 26;19(1):e0297493. doi: 10.1371/journal.pone.0297493. eCollection 2024.
9
Combining SNAPs with antibiotics shows enhanced synergistic efficacy against S. aureus and P. aeruginosa biofilms.
NPJ Biofilms Microbiomes. 2023 Jun 8;9(1):36. doi: 10.1038/s41522-023-00401-8.
10
Novel Synergies and Isolate Specificities in the Drug Interaction Landscape of Mycobacterium abscessus.
Antimicrob Agents Chemother. 2023 Jul 18;67(7):e0009023. doi: 10.1128/aac.00090-23. Epub 2023 Jun 6.

本文引用的文献

1
Insect antimicrobial peptides act synergistically to inhibit a trypanosome parasite.
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). doi: 10.1098/rstb.2015.0302.
2
Combination Effects of Antimicrobial Peptides.
Antimicrob Agents Chemother. 2016 Jan 4;60(3):1717-24. doi: 10.1128/AAC.02434-15.
3
Multidrug evolutionary strategies to reverse antibiotic resistance.
Science. 2016 Jan 1;351(6268):aad3292. doi: 10.1126/science.aad3292.
4
Classic reaction kinetics can explain complex patterns of antibiotic action.
Sci Transl Med. 2015 May 13;7(287):287ra73. doi: 10.1126/scitranslmed.aaa8760.
5
Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria.
Proc Biol Sci. 2015 May 7;282(1806):20150293. doi: 10.1098/rspb.2015.0293.
6
How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23.
ACS Chem Biol. 2014 Sep 19;9(9):2003-7. doi: 10.1021/cb500426r. Epub 2014 Jul 30.
7
Antagonism between bacteriostatic and bactericidal antibiotics is prevalent.
Antimicrob Agents Chemother. 2014 Aug;58(8):4573-82. doi: 10.1128/AAC.02463-14. Epub 2014 May 27.
8
Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.
G3 (Bethesda). 2013 Dec 6;4(6):947-55. doi: 10.1534/g3.113.008516.
9
Can high-risk fungicides be used in mixtures without selecting for fungicide resistance?
Phytopathology. 2014 Apr;104(4):324-31. doi: 10.1094/PHYTO-07-13-0204-R.
10
When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition.
PLoS Biol. 2013;11(4):e1001540. doi: 10.1371/journal.pbio.1001540. Epub 2013 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验