Suppr超能文献

间充质基质细胞衍生的细胞外囊泡在缺氧缺血后保护胎儿大脑。

Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia.

作者信息

Ophelders Daan R M G, Wolfs Tim G A M, Jellema Reint K, Zwanenburg Alex, Andriessen Peter, Delhaas Tammo, Ludwig Anna-Kristin, Radtke Stefan, Peters Vera, Janssen Leon, Giebel Bernd, Kramer Boris W

机构信息

School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands Department of Pediatrics, Maastricht University, Maastricht, The Netherlands.

Department of Pediatrics, Maastricht University, Maastricht, The Netherlands School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.

出版信息

Stem Cells Transl Med. 2016 Jun;5(6):754-63. doi: 10.5966/sctm.2015-0197. Epub 2016 May 9.

Abstract

UNLABELLED

Preterm neonates are susceptible to perinatal hypoxic-ischemic brain injury, for which no treatment is available. In a preclinical animal model of hypoxic-ischemic brain injury in ovine fetuses, we have demonstrated the neuroprotective potential of systemically administered mesenchymal stromal cells (MSCs). The mechanism of MSC treatment is unclear but suggested to be paracrine, through secretion of extracellular vesicles (EVs). Therefore, we investigated in this study the protective effects of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in a preclinical model of preterm hypoxic-ischemic brain injury. Ovine fetuses were subjected to global hypoxia-ischemia by transient umbilical cord occlusion, followed by in utero intravenous administration of MSC-EVs. The therapeutic effects of MSC-EV administration were assessed by analysis of electrophysiological parameters and histology of the brain. Systemic administration of MSC-EVs improved brain function by reducing the total number and duration of seizures, and by preserving baroreceptor reflex sensitivity. These functional protections were accompanied by a tendency to prevent hypomyelination. Cerebral inflammation remained unaffected by the MSC-EV treatment. Our data demonstrate that MSC-EV treatment might provide a novel strategy to reduce the neurological sequelae following hypoxic-ischemic injury of the preterm brain. Our study results suggest that a cell-free preparation comprising neuroprotective MSC-EVs could substitute MSCs in the treatment of preterm neonates with hypoxic-ischemic brain injury, thereby circumventing the potential risks of systemic administration of living cells.

SIGNIFICANCE

Bone marrow-derived mesenchymal stromal cells (MSCs) show promise in treating hypoxic-ischemic injury of the preterm brain. Study results suggest administration of extracellular vesicles, rather than intact MSCs, is sufficient to exert therapeutic effects and avoids potential concerns associated with administration of living cells. The therapeutic efficacy of systemically administered mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) on hypoxia-ischemia-induced injury was assessed in the preterm ovine brain. Impaired function and structural injury of the fetal brain was improved following global hypoxia-ischemia. A cell-free preparation of MSC-EVs could substitute for the cellular counterpart in the treatment of preterm neonates with hypoxic-ischemic brain injury. This may open new clinical applications for "off-the-shelf" interventions with MSC-EVs.

摘要

未标记

早产新生儿易患围产期缺氧缺血性脑损伤,目前尚无有效治疗方法。在绵羊胎儿缺氧缺血性脑损伤的临床前动物模型中,我们已证明全身给予间充质基质细胞(MSC)具有神经保护潜力。MSC治疗的机制尚不清楚,但推测是通过分泌细胞外囊泡(EV)发挥旁分泌作用。因此,我们在本研究中调查了间充质基质细胞衍生的细胞外囊泡(MSC-EV)在早产缺氧缺血性脑损伤临床前模型中的保护作用。通过短暂脐带闭塞使绵羊胎儿遭受全身性缺氧缺血,随后在子宫内静脉注射MSC-EV。通过分析电生理参数和脑组织学评估MSC-EV给药的治疗效果。全身给予MSC-EV可通过减少癫痫发作的总数和持续时间以及保留压力感受器反射敏感性来改善脑功能。这些功能保护伴随着预防髓鞘形成不足的趋势。MSC-EV治疗对脑内炎症无影响。我们的数据表明,MSC-EV治疗可能为减少早产脑缺氧缺血损伤后的神经后遗症提供一种新策略。我们的研究结果表明,包含具有神经保护作用的MSC-EV的无细胞制剂可以替代MSC用于治疗患有缺氧缺血性脑损伤的早产新生儿,从而规避全身给予活细胞的潜在风险。

意义

骨髓来源的间充质基质细胞(MSC)在治疗早产脑缺氧缺血损伤方面显示出前景。研究结果表明,给予细胞外囊泡而非完整的MSC足以发挥治疗作用,并避免了与给予活细胞相关的潜在问题。在早产绵羊脑中评估了全身给予间充质基质细胞衍生的细胞外囊泡(MSC-EV)对缺氧缺血诱导损伤的治疗效果。在全身性缺氧缺血后,胎儿脑的功能受损和结构损伤得到改善。MSC-EV的无细胞制剂可以替代细胞制剂用于治疗患有缺氧缺血性脑损伤的早产新生儿。这可能为使用MSC-EV的“现成”干预措施开辟新的临床应用途径。

相似文献

1
Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia.
Stem Cells Transl Med. 2016 Jun;5(6):754-63. doi: 10.5966/sctm.2015-0197. Epub 2016 May 9.
2
Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression.
Stem Cells Transl Med. 2015 Oct;4(10):1131-43. doi: 10.5966/sctm.2015-0078. Epub 2015 Sep 3.
3
Multipotent adult progenitor cells for hypoxic-ischemic injury in the preterm brain.
J Neuroinflammation. 2015 Dec 23;12:241. doi: 10.1186/s12974-015-0459-5.
4
Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury.
Brain Behav Immun. 2017 Feb;60:220-232. doi: 10.1016/j.bbi.2016.11.011. Epub 2016 Nov 12.

引用本文的文献

2
Exploring the therapeutic potential of MSC-derived secretomes in neonatal care: focus on BPD and NEC.
Stem Cell Res Ther. 2025 Aug 29;16(1):476. doi: 10.1186/s13287-025-04616-8.
4
A milestone for the therapeutic EV field: FDA approves Ryoncil, an allogeneic bone marrow-derived mesenchymal stromal cell therapy.
Extracell Vesicles Circ Nucl Acids. 2025 Mar 25;6(1):183-190. doi: 10.20517/evcna.2025.02. eCollection 2025.
6
Mesenchymal stem cell-derived extracellular vesicles for human diseases.
Extracell Vesicles Circ Nucl Acids. 2024 Feb 6;5(1):64-82. doi: 10.20517/evcna.2023.47. eCollection 2024.
7
Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy?
Stem Cell Rev Rep. 2025 Jan;21(1):236-253. doi: 10.1007/s12015-024-10803-6. Epub 2024 Nov 6.
9
Exosomal MiR-653-3p Alleviates Hypoxic-Ischemic Brain Damage via the TRIM21/p62/Nrf2/CYLD Axis.
Mol Neurobiol. 2025 Mar;62(3):3446-3461. doi: 10.1007/s12035-024-04507-8. Epub 2024 Sep 19.

本文引用的文献

1
Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.
J Extracell Vesicles. 2015 Dec 31;4:30087. doi: 10.3402/jev.v4.30087. eCollection 2015.
2
Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression.
Stem Cells Transl Med. 2015 Oct;4(10):1131-43. doi: 10.5966/sctm.2015-0078. Epub 2015 Sep 3.
3
Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway.
Stem Cells Transl Med. 2015 May;4(5):513-22. doi: 10.5966/sctm.2014-0267. Epub 2015 Mar 30.
4
Inflammation-induced sensitization of the brain in term infants.
Dev Med Child Neurol. 2015 Apr;57 Suppl 3:17-28. doi: 10.1111/dmcn.12723.
6
Proangiogenic compositions of microvesicles derived from human umbilical cord mesenchymal stem cells.
PLoS One. 2014 Dec 16;9(12):e115316. doi: 10.1371/journal.pone.0115316. eCollection 2014.
7
Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report.
J Neurosurg Spine. 2014 Oct;21(4):618-22. doi: 10.3171/2014.5.SPINE13992. Epub 2014 Jul 8.
8
Stem cell therapy for neonatal brain injury.
Clin Perinatol. 2014 Mar;41(1):133-48. doi: 10.1016/j.clp.2013.09.002. Epub 2013 Dec 12.
10
Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep.
PLoS One. 2013 Dec 17;8(12):e81644. doi: 10.1371/journal.pone.0081644. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验