Department of Chemical Engineering and Department of Chemistry, University of California , Berkeley, California 94720, United States.
Department of Physics, Kangwon National University , Chuncheon-si, Gangwon-do 200-701, South Korea.
ACS Cent Sci. 2016 Feb 24;2(2):80-8. doi: 10.1021/acscentsci.5b00402. Epub 2016 Feb 3.
Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host-guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm(2) at 1.23 V vs RHE.
吸收可见光的金属氧化物在光电合成电池中作为光阳极很有吸引力。然而,它们的性能通常受到载流子输运性能差的限制。我们表明,通过使用用于光吸收和载流子输运的单独材料,可以解决这个问题。在这里,我们报告了一个 Ta:TiO2|BiVO4 纳米线光阳极,其中 BiVO4 用作可见光吸收剂,而 Ta:TiO2 用作高表面积电子导体。电化学和光谱测量提供了实验证据,证明了从 BiVO4 到 TiO2 的有利电子转移所需的 II 型能带排列。这里提出的主体-客体纳米线结构允许同时实现高光吸收和载流子收集效率,在相对于 RHE 的 0.2 V 附近开始出现阳极光电流,并且在相对于 RHE 的 1.23 V 时光电流密度为 2.1 mA/cm2。