Suppr超能文献

优化用于血液系统恶性肿瘤的T细胞受体基因疗法。

Optimizing T-cell receptor gene therapy for hematologic malignancies.

作者信息

Morris Emma C, Stauss Hans J

机构信息

Institute of Immunity and Transplantation, University College London, London, United Kingdom.

出版信息

Blood. 2016 Jun 30;127(26):3305-11. doi: 10.1182/blood-2015-11-629071. Epub 2016 May 20.

Abstract

Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients.

摘要

基因工程的最新进展使得利用重定向识别肿瘤相关抗原的患者T细胞开展临床试验成为可能。在工程化表达针对CD19(一种在B细胞和B系恶性肿瘤中表达的分化抗原)的嵌合抗原受体(CAR)的T细胞中,已观察到最为显著的结果。我们提出,非恶性细胞中的抗原表达可能通过维持效应功能和促进记忆来提高T细胞疗法的疗效。虽然CAR识别仅限于细胞表面结构,但T细胞受体(TCR)能够识别细胞内蛋白。这不仅扩大了适合T细胞疗法的肿瘤相关自身抗原的范围,还使得TCR能够靶向癌症诱变基因组。我们将重点介绍可能限制突变特异性T细胞疗法的生物学瓶颈,这可能需要高亲和力的TCR,使其在突变肽浓度较低时能够激活效应功能。出乎意料的是,具有人为高亲和力的修饰TCR在低浓度同源肽刺激下功能不佳,但由于它们可能对交叉反应肽产生最佳反应,从而增加了安全风险。最近的基因编辑工具,如转录激活样效应核酸酶和成簇规律间隔短回文重复序列,提供了一个删除内源性TCR和HLA基因的平台,这消除了同种异体反应性并降低了第三方T细胞的免疫原性。这朝着通用的现成T细胞产品迈出了重要一步,未来可用于治疗大量患者。

相似文献

1
Optimizing T-cell receptor gene therapy for hematologic malignancies.
Blood. 2016 Jun 30;127(26):3305-11. doi: 10.1182/blood-2015-11-629071. Epub 2016 May 20.
2
Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.
Int J Hematol. 2014 Feb;99(2):123-31. doi: 10.1007/s12185-013-1493-7. Epub 2013 Dec 19.
3
CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date.
Blood. 2016 Jun 30;127(26):3312-20. doi: 10.1182/blood-2016-02-629063. Epub 2016 May 20.
4
Optimization of the HA-1-specific T-cell receptor for gene therapy of hematologic malignancies.
Haematologica. 2011 Mar;96(3):477-81. doi: 10.3324/haematol.2010.025916. Epub 2010 Nov 25.
5
Optimization of T-cell Reactivity by Exploiting TCR Chain Centricity for the Purpose of Safe and Effective Antitumor TCR Gene Therapy.
Cancer Immunol Res. 2015 Sep;3(9):1070-81. doi: 10.1158/2326-6066.CIR-14-0222. Epub 2015 May 5.
6
[Gene-modified T-cell therapy using chimeric antigen receptors for pediatric hematologic malignancies].
Rinsho Ketsueki. 2016 Jun;57(6):701-8. doi: 10.11406/rinketsu.57.701.
7
Adoptive therapy with CAR redirected T cells for hematological malignancies.
Sci China Life Sci. 2016 Apr;59(4):370-8. doi: 10.1007/s11427-016-5036-3. Epub 2016 Mar 22.
9
CD19 chimeric antigen receptor T cell therapy for haematological malignancies.
Br J Haematol. 2015 May;169(4):463-78. doi: 10.1111/bjh.13340. Epub 2015 Mar 5.
10
Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies.
Immunol Rev. 2015 Jan;263(1):68-89. doi: 10.1111/imr.12243.

引用本文的文献

2
Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system.
Heliyon. 2024 Oct 18;10(20):e39538. doi: 10.1016/j.heliyon.2024.e39538. eCollection 2024 Oct 30.
3
Harnessing the evolving CRISPR/Cas9 for precision oncology.
J Transl Med. 2024 Aug 8;22(1):749. doi: 10.1186/s12967-024-05570-4.
4
CAR-T and other adoptive cell therapies for B cell malignancies.
J Natl Cancer Cent. 2021 Jul 10;1(3):88-96. doi: 10.1016/j.jncc.2021.07.001. eCollection 2021 Sep.
5
Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies.
Int J Mol Sci. 2024 Mar 1;25(5):2891. doi: 10.3390/ijms25052891.
6
Immunoengineering via Chimeric Antigen Receptor-T Cell Therapy: Reprogramming Nanodrug Delivery.
Pharmaceutics. 2023 Oct 13;15(10):2458. doi: 10.3390/pharmaceutics15102458.
7
Evaluation of diversity indices to estimate clonal dominance in gene therapy studies.
Mol Ther Methods Clin Dev. 2023 May 9;29:418-425. doi: 10.1016/j.omtm.2023.05.003. eCollection 2023 Jun 8.
8
Knowledge mapping and current trends of global research on CRISPR in the field of cancer.
Front Cell Dev Biol. 2023 May 2;11:1178221. doi: 10.3389/fcell.2023.1178221. eCollection 2023.
9
Penile cancer: Updates in systemic therapy.
Asian J Urol. 2022 Oct;9(4):374-388. doi: 10.1016/j.ajur.2022.03.006. Epub 2022 May 13.
10
Advances in CRISPR/Cas9.
Biomed Res Int. 2022 Sep 23;2022:9978571. doi: 10.1155/2022/9978571. eCollection 2022.

本文引用的文献

1
T-cell receptor gene therapy--ready to go viral?
Mol Oncol. 2015 Dec;9(10):2019-42. doi: 10.1016/j.molonc.2015.10.006. Epub 2015 Oct 20.
2
NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma.
Nat Med. 2015 Aug;21(8):914-921. doi: 10.1038/nm.3910. Epub 2015 Jul 20.
3
Genetic Regulation of Fate Decisions in Therapeutic T Cells to Enhance Tumor Protection and Memory Formation.
Cancer Res. 2015 Jul 1;75(13):2641-52. doi: 10.1158/0008-5472.CAN-14-3283. Epub 2015 Apr 22.
5
Adoptive cellular therapy: a race to the finish line.
Sci Transl Med. 2015 Mar 25;7(280):280ps7. doi: 10.1126/scitranslmed.aaa3643.
7
Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma.
Clin Cancer Res. 2015 May 15;21(10):2278-88. doi: 10.1158/1078-0432.CCR-14-2085. Epub 2015 Feb 18.
9
Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic.
Mol Immunol. 2015 Oct;67(2 Pt A):46-57. doi: 10.1016/j.molimm.2014.12.009. Epub 2015 Jan 13.
10
HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL).
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E166-75. doi: 10.1073/pnas.1416389112. Epub 2014 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验