Giegé Richard, Springer Mathias
Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France.
Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0002-2016.
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
氨酰-tRNA合成酶(aaRSs)是在生命三界中普遍保守的模块化酶。它们都催化相同的两步反应,即将蛋白质ogenic氨基酸连接到其同源tRNA上,从而介导遗传密码的正确表达。此外,一些aaRSs在翻译中的这一关键作用之外还获得了其他功能。基因组学和X射线晶体学揭示了aaRSs的巨大结构多样性(例如,在寡聚化和模块化方面,在分为两个不同组且每组再细分为3个亚组方面,通过附加在催化模块上的额外结构域)。AaRSs表现出与功能相关的巨大结构可塑性以及有限的特异性,这些特异性是特定于界甚至物种的(例如,许多细菌中存在非特异性aaRSs以补偿一种或两种特定aaRSs的缺失,特别是天冬酰胺RS和/或谷氨酰胺RS)。多样性也存在于aaRS基因调控机制中,这些机制在进化过程中并不保守,特别是在革兰氏阳性菌和革兰氏阴性菌等远缘群体之间。本综述聚焦于细菌aaRSs(及其旁系同源物),涵盖它们的结构、功能、调控和进化。强调了结构/功能关系,特别是tRNA氨酰化的酶学以及校正激活和充电错误的编辑机制。回顾了过去二十年积累的大量基因组和结构数据,展示了该领域如何从本质上的还原论生物学转向更全面和综合的方法。同样,也综述了aaRSs及其旁系同源物的替代功能(例如,在细胞壁生物合成以及蛋白质合成内外的其他代谢过程中)。由于aaRS系统发育呈现出混杂的细菌、古菌和真核生物特征,因此在整个综述中都指出了生命三界中aaRSs性质的异同,并概述了细胞器中类似细菌合成酶的独特特征。