Suppr超能文献

大肠杆菌的系统代谢工程

Systems Metabolic Engineering of Escherichia coli.

作者信息

Choi Kyeong Rok, Shin Jae Ho, Cho Jae Sung, Yang Dongsoo, Lee Sang Yup

机构信息

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea.

BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.

出版信息

EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0010-2015.

Abstract

Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

摘要

系统代谢工程是近年来随着代谢工程与系统生物学、合成生物学和进化工程相结合而兴起的,它能够在系统层面上对微生物进行工程改造,以生产出远远超出其天然能力的有价值化学品。在此,我们综述系统代谢工程的策略,特别是其在大肠杆菌中的应用。首先,我们介绍为在大肠杆菌中进行基因操作以提高所需化学品产量而开发的各种工具。接下来,我们详细阐述大肠杆菌中系统代谢工程的策略,包括天然代谢的工程改造、利用合成途径扩展代谢以及为实现所需化学品更高产量而进行的过程工程方面。最后,我们以几个显著的产品为例,研究通过系统代谢工程开发的大肠杆菌菌株所生产的产品。这里列出的由工程改造的大肠杆菌成功生产的大量化学产品组合,展示了在微生物化学品生产方面可以设想和实现的巨大能力。系统代谢工程已不再处于起步阶段;它现在已被广泛应用,并且还准备进一步接受下一代跨学科原理和创新以实现升级。系统代谢工程将在开发包括大肠杆菌在内的工业菌株方面发挥越来越重要的作用,这些菌株能够从可再生的非粮食生物质中高效生产天然和非天然化学品及材料。

相似文献

1
Systems Metabolic Engineering of Escherichia coli.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0010-2015.
2
Systems Metabolic Engineering of Escherichia coli.
EcoSal Plus. 2017 Mar;7(2). doi: 10.1128/ecosalplus.ESP-0088-2015.
3
Construction and optimization of synthetic pathways in metabolic engineering.
Curr Opin Microbiol. 2010 Jun;13(3):363-70. doi: 10.1016/j.mib.2010.02.004. Epub 2010 Mar 10.
4
Escherichia coli as a platform microbial host for systems metabolic engineering.
Essays Biochem. 2021 Jul 26;65(2):225-246. doi: 10.1042/EBC20200172.
5
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.
J Biomed Biotechnol. 2010;2010:761042. doi: 10.1155/2010/761042. Epub 2010 Apr 6.
6
Systems metabolic engineering design: fatty acid production as an emerging case study.
Biotechnol Bioeng. 2014 May;111(5):849-57. doi: 10.1002/bit.25205. Epub 2014 Feb 24.
7
Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.
Biotechnol Adv. 2013 Dec;31(8):1200-23. doi: 10.1016/j.biotechadv.2013.02.009. Epub 2013 Mar 6.
8
Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.
Appl Microbiol Biotechnol. 2010 Mar;86(2):419-34. doi: 10.1007/s00253-010-2446-1. Epub 2010 Feb 9.
9
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Nat Chem Biol. 2012 May 17;8(6):536-46. doi: 10.1038/nchembio.970.
10
Engineering Robustness of Microbial Cell Factories.
Biotechnol J. 2017 Oct;12(10). doi: 10.1002/biot.201700014. Epub 2017 Sep 18.

引用本文的文献

2
Optimizing strains and fermentation processes for enhanced L-lysine production: a review.
Front Microbiol. 2024 Oct 4;15:1485624. doi: 10.3389/fmicb.2024.1485624. eCollection 2024.
3
Harnessing synthetic biology for advancing RNA therapeutics and vaccine design.
NPJ Syst Biol Appl. 2023 Nov 30;9(1):60. doi: 10.1038/s41540-023-00323-3.
4
Application of different types of CRISPR/Cas-based systems in bacteria.
Microb Cell Fact. 2020 Sep 3;19(1):172. doi: 10.1186/s12934-020-01431-z.
5
Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production.
mBio. 2019 Jan 22;10(1):e02683-18. doi: 10.1128/mBio.02683-18.
6
Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors.
Biomed Res Int. 2018 Jul 9;2018:7021826. doi: 10.1155/2018/7021826. eCollection 2018.
7
Heterologous Production of Flavour and Aroma Compounds in .
Genes (Basel). 2018 Jun 28;9(7):326. doi: 10.3390/genes9070326.
10
Microbial production of vitamin B: a review and future perspectives.
Microb Cell Fact. 2017 Jan 30;16(1):15. doi: 10.1186/s12934-017-0631-y.

本文引用的文献

1
DNA-binding Specificity Is a Major Determinant of the Activity and Toxicity of Zinc-finger Nucleases.
Mol Ther. 2008 Feb;16(2):352-358. doi: 10.1038/sj.mt.6300357. Epub 2016 Dec 7.
3
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.
4
Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid.
Metab Eng. 2015 Jul;30:121-129. doi: 10.1016/j.ymben.2015.05.005. Epub 2015 Jun 7.
6
Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase.
Appl Environ Microbiol. 2015 Jul;81(13):4423-31. doi: 10.1128/AEM.00873-15. Epub 2015 Apr 24.
8
In vivo genome editing using Staphylococcus aureus Cas9.
Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
9
CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.
ACS Synth Biol. 2015 Sep 18;4(9):1020-9. doi: 10.1021/acssynbio.5b00038. Epub 2015 Apr 7.
10
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
Acta Biochim Biophys Sin (Shanghai). 2015 Apr;47(4):231-43. doi: 10.1093/abbs/gmv007. Epub 2015 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验