Cranfill Paula J, Sell Brittney R, Baird Michelle A, Allen John R, Lavagnino Zeno, de Gruiter H Martijn, Kremers Gert-Jan, Davidson Michael W, Ustione Alessandro, Piston David W
National High Field Magnet Lab, Florida State University, Tallahassee, Florida, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
Nat Methods. 2016 Jul;13(7):557-62. doi: 10.1038/nmeth.3891. Epub 2016 May 30.
The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight β-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.
用于分子和细胞基因标记的荧光蛋白(FPs)的出现彻底改变了荧光显微镜技术。基因操作已创造出大量跨越从蓝色到红色光谱区域的明亮且稳定的荧光蛋白。自发荧光荧光蛋白的共同特点是其紧密的β桶状结构,该结构提供了有效荧光所需的刚性和化学环境。尽管结构相同,但每种荧光蛋白都有独特的特性。因此,不存在适用于所有情况的单一“最佳”荧光蛋白,每种荧光蛋白都有优缺点。为了指导关于哪种荧光蛋白适用于特定应用的决策,我们对40多种荧光蛋白的亮度、光稳定性、pH稳定性和单体特性进行了定量表征,以便能够在它们之间进行直接且简单的比较。我们关注每个光谱区域中流行的和/或表现最佳的荧光蛋白。