Suppr超能文献

金属依赖性调节ESX-3分泌在结核分枝杆菌细胞内存活中的作用

Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis.

作者信息

Tinaztepe Emir, Wei Jun-Rong, Raynowska Jenelle, Portal-Celhay Cynthia, Thompson Victor, Philips Jennifer A

机构信息

Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, New York, USA.

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Infect Immun. 2016 Jul 21;84(8):2255-2263. doi: 10.1128/IAI.00197-16. Print 2016 Aug.

Abstract

More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis.

摘要

每年死于结核分枝杆菌感染的人数比死于任何其他细菌病原体感染的人数都要多。环境分枝杆菌和致病性分枝杆菌都利用VII型分泌系统(T7SS)跨其复杂的细胞壁分泌蛋白质。在非致病性耻垢分枝杆菌中,ESX-1 T7SS在接合过程中发挥作用,而ESX-3 T7SS参与金属稳态。在结核分枝杆菌中,这些分泌系统在毒力方面发挥作用,并且它们也是宿主免疫反应的靶点。ESX-3分泌一种由EsxG(TB9.8)和EsxH(TB10.4)组成的异二聚体,该异二聚体损害巨噬细胞中的吞噬体成熟,并且对小鼠的毒力至关重要。鉴于EsxG和EsxH在感染过程中的重要性,我们研究了它们的调控。对于结核分枝杆菌,EsxG和EsxH的分泌根据铁和锌进行调节,这与先前描述的esx-3基因座对这些金属的转录反应一致。虽然铁调节结核分枝杆菌和耻垢分枝杆菌中的esx-3表达,但这种调节的动力学存在显著差异。在耻垢分枝杆菌中,esx-3基因座的行为类似于其他铁调节基因,如mbtB。在结核分枝杆菌中,铁和锌均适度抑制esx-3表达。对这些金属的反应中EsxG和EsxH分泌减少改变了结核分枝杆菌与巨噬细胞的相互作用,导致细胞内结核分枝杆菌存活受损。我们的研究结果详细阐述了结核分枝杆菌和耻垢分枝杆菌中esx-3的调控差异,并证明了ESX-3的金属依赖性调控对结核分枝杆菌毒力的重要性。

相似文献

1
Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis.
Infect Immun. 2016 Jul 21;84(8):2255-2263. doi: 10.1128/IAI.00197-16. Print 2016 Aug.
3
Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E348-57. doi: 10.1073/pnas.1523321113. Epub 2016 Jan 4.
5
The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis.
PLoS One. 2013 Oct 14;8(10):e78351. doi: 10.1371/journal.pone.0078351. eCollection 2013.
6
ESX-3 secretion system in Mycobacterium: An overview.
Biochimie. 2024 Jan;216:46-55. doi: 10.1016/j.biochi.2023.10.013. Epub 2023 Oct 23.
8
Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc.
J Bacteriol. 2009 Oct;191(20):6340-4. doi: 10.1128/JB.00756-09. Epub 2009 Aug 14.
10
The ESX-1 Substrate PPE68 Has a Key Function in ESX-1-Mediated Secretion in Mycobacterium marinum.
mBio. 2022 Dec 20;13(6):e0281922. doi: 10.1128/mbio.02819-22. Epub 2022 Nov 21.

引用本文的文献

1
Mycobacterium susceptibility to ivermectin by inhibition of eccD3, an ESX-3 secretion system component.
PLoS Comput Biol. 2025 Apr 17;21(4):e1012936. doi: 10.1371/journal.pcbi.1012936. eCollection 2025 Apr.
2
The role of transcriptional regulators in metal ion homeostasis of .
Front Cell Infect Microbiol. 2024 Mar 11;14:1360880. doi: 10.3389/fcimb.2024.1360880. eCollection 2024.
3
The cell envelope of Mycobacterium abscessus and its role in pathogenesis.
PLoS Pathog. 2023 May 18;19(5):e1011318. doi: 10.1371/journal.ppat.1011318. eCollection 2023 May.
4
In silico EsxG EsxH rational epitope selection: Candidate epitopes for vaccine design against pulmonary tuberculosis.
PLoS One. 2023 Apr 20;18(4):e0284264. doi: 10.1371/journal.pone.0284264. eCollection 2023.
5
Types and functions of heterogeneity in mycobacteria.
Nat Rev Microbiol. 2022 Sep;20(9):529-541. doi: 10.1038/s41579-022-00721-0. Epub 2022 Apr 1.
6
Kupyaphores are zinc homeostatic metallophores required for colonization of .
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2110293119.
7
Proteome Profiling of Cells Exposed to Nitrosative Stress.
ACS Omega. 2022 Jan 14;7(4):3470-3482. doi: 10.1021/acsomega.1c05923. eCollection 2022 Feb 1.
8
Insights into the ancestry evolution of the complex from analysis of .
NAR Genom Bioinform. 2021 Aug 11;3(3):lqab070. doi: 10.1093/nargab/lqab070. eCollection 2021 Sep.
9
Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM.
J Membr Biol. 2021 Jun;254(3):321-341. doi: 10.1007/s00232-021-00179-w. Epub 2021 May 5.

本文引用的文献

1
Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E348-57. doi: 10.1073/pnas.1523321113. Epub 2016 Jan 4.
2
MntR(Rv2788): a transcriptional regulator that controls manganese homeostasis in Mycobacterium tuberculosis.
Mol Microbiol. 2015 Dec;98(6):1168-83. doi: 10.1111/mmi.13207. Epub 2015 Oct 1.
3
The mycobacterial iron-dependent regulator IdeR induces ferritin (bfrB) by alleviating Lsr2 repression.
Mol Microbiol. 2015 Dec;98(5):864-77. doi: 10.1111/mmi.13166. Epub 2015 Sep 18.
4
Metallobiology of Tuberculosis.
Microbiol Spectr. 2014 Jun;2(3). doi: 10.1128/microbiolspec.MGM2-0012-2013.
5
Mycobacteria, metals, and the macrophage.
Immunol Rev. 2015 Mar;264(1):249-63. doi: 10.1111/imr.12265.
6
Iron acquisition strategies in mycobacteria.
Tuberculosis (Edinb). 2015 Mar;95(2):123-30. doi: 10.1016/j.tube.2015.01.004. Epub 2015 Jan 17.
7
Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming.
Cell Host Microbe. 2014 Jun 11;15(6):741-52. doi: 10.1016/j.chom.2014.05.007.
8
The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis.
PLoS Pathog. 2014 May 29;10(5):e1004183. doi: 10.1371/journal.ppat.1004183. eCollection 2014 May.
9
Mycobacterial Esx-3 requires multiple components for iron acquisition.
mBio. 2014 May 6;5(3):e01073-14. doi: 10.1128/mBio.01073-14.
10
Competition for zinc binding in the host-pathogen interaction.
Front Cell Infect Microbiol. 2013 Dec 24;3:108. doi: 10.3389/fcimb.2013.00108. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验