Suppr超能文献

Survalytics:适用于 Android 操作系统应用的开源云集成体验采样、调查和分析以及元数据收集模块。

Survalytics: An Open-Source Cloud-Integrated Experience Sampling, Survey, and Analytics and Metadata Collection Module for Android Operating System Apps.

机构信息

Assistant Professor of Anesthesiology, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States.

出版信息

JMIR Mhealth Uhealth. 2016 Jun 3;4(2):e46. doi: 10.2196/mhealth.5397.

Abstract

BACKGROUND

We describe here Survalytics, a software module designed to address two broad areas of need. The first area is in the domain of surveys and app analytics: developers of mobile apps in both academic and commercial environments require information about their users, as well as how the apps are being used, to understand who their users are and how to optimally approach app development. The second area of need is in the field of ecological momentary assessment, also referred to as experience sampling: researchers in a wide variety of fields, spanning from the social sciences to psychology to clinical medicine, would like to be able to capture daily or even more frequent data from research subjects while in their natural environment.

OBJECTIVE

Survalytics is an open-source solution for the collection of survey responses as well as arbitrary analytic metadata from users of Android operating system apps.

METHODS

Surveys may be administered in any combination of one-time questions and ongoing questions. The module may be deployed as a stand-alone app for experience sampling purposes or as an add-on to existing apps. The module takes advantage of free-tier NoSQL cloud database management offered by the Amazon Web Services DynamoDB platform to package a secure, flexible, extensible data collection module. DynamoDB is capable of Health Insurance Portability and Accountability Act compliant storage of personal health information.

RESULTS

The provided example app may be used without modification for a basic experience sampling project, and we provide example questions for daily collection of blood glucose data from study subjects.

CONCLUSIONS

The module will help researchers in a wide variety of fields rapidly develop tailor-made Android apps for a variety of data collection purposes.

摘要

背景

我们在这里描述 Survalytics,这是一个软件模块,旨在满足两个广泛的需求领域。第一个领域是调查和应用分析:学术和商业环境中的移动应用程序开发人员需要有关其用户的信息,以及应用程序的使用方式,以了解其用户是谁以及如何优化应用程序开发。第二个需求领域是生态瞬间评估领域,也称为体验采样:从社会科学到心理学再到临床医学等各个领域的研究人员都希望能够在研究对象的自然环境中从研究对象那里捕获日常甚至更频繁的数据。

目的

Survalytics 是一种用于收集调查响应以及来自 Android 操作系统应用程序用户的任意分析元数据的开源解决方案。

方法

调查可以以一次性问题和持续问题的任意组合进行管理。该模块可以作为体验采样目的的独立应用程序部署,也可以作为现有应用程序的附加组件。该模块利用亚马逊网络服务(Amazon Web Services)DynamoDB 平台提供的免费层级的非关系型数据库管理系统(NoSQL)来打包一个安全、灵活、可扩展的数据收集模块。DynamoDB 能够符合《健康保险流通与责任法案》(Health Insurance Portability and Accountability Act)的规定,存储个人健康信息。

结果

提供的示例应用程序可无需修改即可用于基本体验采样项目,并且我们提供了用于从研究对象日常收集血糖数据的示例问题。

结论

该模块将帮助各个领域的研究人员快速为各种数据收集目的开发定制的 Android 应用程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e2/4912681/5d8de1e30dbb/mhealth_v4i2e46_fig1.jpg

相似文献

2
ExperienceSampler: An open-source scaffold for building smartphone apps for experience sampling.
Psychol Methods. 2018 Dec;23(4):729-739. doi: 10.1037/met0000151. Epub 2017 Jun 15.
3
A Platform to Build Mobile Health Apps: The Personal Health Intervention Toolkit (PHIT).
JMIR Mhealth Uhealth. 2015 Jun 1;3(2):e46. doi: 10.2196/mhealth.4202.
4
Enabling Psychiatrists to be Mobile Phone App Developers: Insights Into App Development Methodologies.
JMIR Mhealth Uhealth. 2014 Nov 11;2(4):e53. doi: 10.2196/mhealth.3425.
6
An Android Communication App Forensic Taxonomy.
J Forensic Sci. 2016 Sep;61(5):1337-50. doi: 10.1111/1556-4029.13164. Epub 2016 Jul 22.
8
Popular Glucose Tracking Apps and Use of mHealth by Latinos With Diabetes: Review.
JMIR Mhealth Uhealth. 2015 Aug 25;3(3):e84. doi: 10.2196/mhealth.3986.
9
DiaFit: The Development of a Smart App for Patients with Type 2 Diabetes and Obesity.
JMIR Diabetes. 2016 Jul-Dec;1(2). doi: 10.2196/diabetes.6662.
10
Application of low-cost methodologies for mobile phone app development.
JMIR Mhealth Uhealth. 2014 Dec 9;2(4):e55. doi: 10.2196/mhealth.3549.

引用本文的文献

2
Regional anesthesia educational material utilization varies by World Bank income category: A mobile health application data study.
PLoS One. 2021 Feb 1;16(2):e0244860. doi: 10.1371/journal.pone.0244860. eCollection 2021.
3
Impact of COVID-19 response on global surgical volumes: an ongoing observational study.
Bull World Health Organ. 2020 Oct 1;98(10):671-682. doi: 10.2471/BLT.20.264044. Epub 2020 Sep 3.
4
Formal representation of ambulatory assessment protocols in HTML5 for human readability and computer execution.
Behav Res Methods. 2019 Dec;51(6):2761-2776. doi: 10.3758/s13428-018-1148-y.
5
Crowdsourcing sugammadex adverse event rates using an in-app survey: feasibility assessment from an observational study.
Ther Adv Drug Saf. 2018 Jul;9(7):331-342. doi: 10.1177/2042098618769565. Epub 2018 Apr 18.
6
Moving anesthesiology educational resources to the point of care: experience with a pediatric anesthesia mobile app.
Korean J Anesthesiol. 2018 Jun;71(3):192-200. doi: 10.4097/kja.d.18.00014. Epub 2018 May 9.
7
Assessing the global reach and value of a provider-facing healthcare app using large-scale analytics.
BMJ Glob Health. 2017 Aug 6;2(3):e000299. doi: 10.1136/bmjgh-2017-000299. eCollection 2017.

本文引用的文献

2
A Platform to Build Mobile Health Apps: The Personal Health Intervention Toolkit (PHIT).
JMIR Mhealth Uhealth. 2015 Jun 1;3(2):e46. doi: 10.2196/mhealth.4202.
3
A smartphone ecological momentary assessment/intervention "app" for collecting real-time data and promoting self-awareness.
PLoS One. 2013 Aug 14;8(8):e71325. doi: 10.1371/journal.pone.0071325. eCollection 2013.
4
The emergent discipline of health web science.
J Med Internet Res. 2013 Aug 22;15(8):e166. doi: 10.2196/jmir.2499.
5
Ecological momentary assessment.
Annu Rev Clin Psychol. 2008;4:1-32. doi: 10.1146/annurev.clinpsy.3.022806.091415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验