Suppr超能文献

具有温敏性和高柔韧性的水凝胶,可在静态和动态机械训练条件下刺激心脏球源性细胞的心脏分化。

Thermosensitive and Highly Flexible Hydrogels Capable of Stimulating Cardiac Differentiation of Cardiosphere-Derived Cells under Static and Dynamic Mechanical Training Conditions.

机构信息

Department of Materials Science and Engineering and ⊥Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States.

Department of Gerontology, Tongji Hospital, and ∥Tongji Hospital, Tongji University , Shanghai, China.

出版信息

ACS Appl Mater Interfaces. 2016 Jun 29;8(25):15948-57. doi: 10.1021/acsami.6b04932. Epub 2016 Jun 20.

Abstract

Cardiac stem cell therapy has been considered as a promising strategy for heart tissue regeneration. Yet achieving cardiac differentiation after stem cell transplantation remains challenging. This compromises the efficacy of current stem cell therapy. Delivery of cells using matrices that stimulate the cardiac differentiation may improve the degree of cardiac differentiation in the heart tissue. In this report, we investigated whether elastic modulus of highly flexible poly(N-isopropylamide) (PNIPAAm)-based hydrogels can be modulated to stimulate the encapsulated cardiosphere derived cells (CDCs) to differentiate into cardiac lineage under static condition and dynamic stretching that mimics the heart beating condition. We have developed hydrogels whose moduli do not change under both dynamic stretching and static conditions for 14 days. The hydrogels had the same chemical structure but different elastic moduli (11, 21, and 40 kPa). CDCs were encapsulated into these hydrogels and cultured under either native heart-mimicking dynamic stretching environment (12% strain and 1 Hz frequency) or static culture condition. CDCs were able to grow in all three hydrogels. The greatest growth was found in the hydrogel with elastic modulus of 40 kPa. The dynamic stretching condition stimulated CDC growth. The CDCs demonstrated elastic modulus-dependent cardiac differentiation under both static and dynamic stretching conditions as evidenced by gene and protein expressions of cardiac markers such as MYH6, CACNA1c, cTnI, and Connexin 43. The highest differentiation was found in the 40 kPa hydrogel. These results suggest that delivery of CDCs with the 40 kPa hydrogel may enhance cardiac differentiation in the infarct hearts.

摘要

心脏干细胞治疗被认为是心肌组织再生的一种有前途的策略。然而,干细胞移植后实现心脏分化仍然具有挑战性。这会影响当前干细胞治疗的效果。使用基质来输送细胞,刺激心脏分化,可能会提高心脏组织中心脏分化的程度。在本报告中,我们研究了高度灵活的聚(N-异丙基丙烯酰胺)(PNIPAAm)基水凝胶的弹性模量是否可以调节,以刺激包封的心脏球源性细胞(CDCs)在静态条件和模拟心脏跳动条件的动态拉伸下分化为心脏谱系。我们开发了水凝胶,其在 14 天内的动态拉伸和静态条件下的模量都不会发生变化。这些水凝胶具有相同的化学结构,但弹性模量不同(11、21 和 40 kPa)。将 CDCs 包封在这些水凝胶中,并在模拟心脏的动态拉伸环境(12%应变和 1 Hz 频率)或静态培养条件下培养。CDCs 能够在这三种水凝胶中生长。在弹性模量为 40 kPa 的水凝胶中发现了最大的生长。动态拉伸条件刺激了 CDC 的生长。CDCs 在静态和动态拉伸条件下表现出弹性模量依赖性的心脏分化,这表现为心脏标志物如 MYH6、CACNA1c、cTnI 和 Connexin 43 的基因和蛋白表达。在 40 kPa 水凝胶中发现了最高的分化。这些结果表明,用 40 kPa 水凝胶输送 CDCs 可能会增强梗死心脏中的心脏分化。

相似文献

2
Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
Biomaterials. 2011 Apr;32(12):3220-32. doi: 10.1016/j.biomaterials.2011.01.050. Epub 2011 Feb 5.
3
High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel.
Acta Biomater. 2012 Oct;8(10):3586-95. doi: 10.1016/j.actbio.2012.06.024. Epub 2012 Jun 21.
4
Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.
Acta Biomater. 2015 Oct;26:23-33. doi: 10.1016/j.actbio.2015.08.010. Epub 2015 Aug 12.
5
Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix.
Acta Biomater. 2014 Aug;10(8):3449-62. doi: 10.1016/j.actbio.2014.04.018. Epub 2014 Apr 24.
6
pH-Sensitive and Thermosensitive Hydrogels as Stem-Cell Carriers for Cardiac Therapy.
ACS Appl Mater Interfaces. 2016 May 4;8(17):10752-60. doi: 10.1021/acsami.6b01374. Epub 2016 Apr 22.
7
Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment.
Biomaterials. 2015 Dec;73:1-11. doi: 10.1016/j.biomaterials.2015.09.001. Epub 2015 Sep 4.
8
An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition.
Biomaterials. 2012 Sep;33(25):5914-23. doi: 10.1016/j.biomaterials.2012.05.012. Epub 2012 May 30.
10
Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
Adv Healthc Mater. 2016 Feb 18;5(4):474-88. doi: 10.1002/adhm.201500520. Epub 2015 Dec 2.

引用本文的文献

2
Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective.
Biophys Rev (Melville). 2023 Mar;4(1):011314. doi: 10.1063/5.0141269. Epub 2023 Mar 29.
4
Lyotropic Liquid Crystals: A Biocompatible and Safe Material for Local Cardiac Application.
Pharmaceutics. 2022 Feb 20;14(2):452. doi: 10.3390/pharmaceutics14020452.
5
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration.
Int J Mol Sci. 2020 Oct 18;21(20):7701. doi: 10.3390/ijms21207701.
8
Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery.
Acta Biomater. 2019 Jan 1;83:96-108. doi: 10.1016/j.actbio.2018.10.038. Epub 2018 Oct 26.
9
Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications.
Nanomaterials (Basel). 2018 Nov 13;8(11):935. doi: 10.3390/nano8110935.

本文引用的文献

1
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16.
2
Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.
Acta Biomater. 2015 Oct;26:23-33. doi: 10.1016/j.actbio.2015.08.010. Epub 2015 Aug 12.
3
Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement.
J Am Coll Cardiol. 2014 Sep 2;64(9):922-37. doi: 10.1016/j.jacc.2014.06.1175.
5
From biowaste to bioresource: Effect of a lignocellulosic filler on the properties of poly(3-hydroxybutyrate).
Int J Biol Macromol. 2014 Nov;71:163-73. doi: 10.1016/j.ijbiomac.2014.07.038. Epub 2014 Jul 30.
6
Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix.
Acta Biomater. 2014 Aug;10(8):3449-62. doi: 10.1016/j.actbio.2014.04.018. Epub 2014 Apr 24.
8
Allogeneic adipose stem cell therapy in acute myocardial infarction.
Eur J Clin Invest. 2014 Jan;44(1):83-92. doi: 10.1111/eci.12195.
9
Human blood and cardiac stem cells synergize to enhance cardiac repair when cotransplanted into ischemic myocardium.
Circulation. 2013 Sep 10;128(11 Suppl 1):S105-12. doi: 10.1161/CIRCULATIONAHA.112.000374.
10
A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells.
Nat Cell Biol. 2013 Sep;15(9):1098-106. doi: 10.1038/ncb2824. Epub 2013 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验