Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Cell Syst. 2016 Jun 22;2(6):402-11. doi: 10.1016/j.cels.2016.05.006. Epub 2016 Jun 16.
Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.
细菌必须保持机械完整性,以承受细胞膜和细胞壁两侧的巨大渗透压差异。尽管保持机械完整性对正常细胞功能至关重要,但这一事实被细胞壁靶向抗生素所利用,而有助于细胞力学的蛋白质仍未被识别。在这里,我们描述了一种高通量的光学方法来量化细胞的硬度,并将该技术应用于约 4000 个大肠杆菌突变体的全基因组集合。我们鉴定了在细胞壁合成、能量产生和 DNA 复制和修复等多种功能过程中具有作用的基因,当这些基因缺失时,细胞硬度会显著改变。我们观察到,在细胞壁合成中具有生化冗余作用的蛋白质缺失时会表现出不同的硬度缺陷。将我们的数据与化学筛选相关联表明,降低膜电位通常会增加细胞硬度。总的来说,我们的工作表明,细菌细胞的硬度是细胞壁和更广泛的细胞生理学的特性,并为未来的机械调节系统研究奠定了基础。