Suppr超能文献

机械基因组学鉴定出多种细菌细胞刚性的调节剂。

Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell Syst. 2016 Jun 22;2(6):402-11. doi: 10.1016/j.cels.2016.05.006. Epub 2016 Jun 16.

Abstract

Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

摘要

细菌必须保持机械完整性,以承受细胞膜和细胞壁两侧的巨大渗透压差异。尽管保持机械完整性对正常细胞功能至关重要,但这一事实被细胞壁靶向抗生素所利用,而有助于细胞力学的蛋白质仍未被识别。在这里,我们描述了一种高通量的光学方法来量化细胞的硬度,并将该技术应用于约 4000 个大肠杆菌突变体的全基因组集合。我们鉴定了在细胞壁合成、能量产生和 DNA 复制和修复等多种功能过程中具有作用的基因,当这些基因缺失时,细胞硬度会显著改变。我们观察到,在细胞壁合成中具有生化冗余作用的蛋白质缺失时会表现出不同的硬度缺陷。将我们的数据与化学筛选相关联表明,降低膜电位通常会增加细胞硬度。总的来说,我们的工作表明,细菌细胞的硬度是细胞壁和更广泛的细胞生理学的特性,并为未来的机械调节系统研究奠定了基础。

相似文献

1
Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.
Cell Syst. 2016 Jun 22;2(6):402-11. doi: 10.1016/j.cels.2016.05.006. Epub 2016 Jun 16.
3
Deciphering the adaption of bacterial cell wall mechanical integrity and turgor to different chemical or mechanical environments.
J Colloid Interface Sci. 2023 Jun 15;640:510-520. doi: 10.1016/j.jcis.2023.02.100. Epub 2023 Feb 23.
4
Who's Your DadA? d-Alanine Levels Regulate Bacterial Stiffness.
mBio. 2018 Oct 23;9(5):e02127-18. doi: 10.1128/mBio.02127-18.
5
Homeostatic Cell Growth Is Accomplished Mechanically through Membrane Tension Inhibition of Cell-Wall Synthesis.
Cell Syst. 2017 Dec 27;5(6):578-590.e6. doi: 10.1016/j.cels.2017.11.005. Epub 2017 Dec 1.
7
Mechanics and Dynamics of Bacterial Cell Lysis.
Biophys J. 2019 Jun 18;116(12):2378-2389. doi: 10.1016/j.bpj.2019.04.040. Epub 2019 May 17.
8
Bacterial Cell Wall Quality Control during Environmental Stress.
mBio. 2020 Oct 13;11(5):e02456-20. doi: 10.1128/mBio.02456-20.
9
Bacterial growth and form under mechanical compression.
Sci Rep. 2015 Jun 18;5:11367. doi: 10.1038/srep11367.
10
Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9182-5. doi: 10.1073/pnas.0911517107. Epub 2010 May 3.

引用本文的文献

3
A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall.
bioRxiv. 2024 Aug 12:2024.04.04.588103. doi: 10.1101/2024.04.04.588103.
4
Mechanical morphotype switching as an adaptive response in mycobacteria.
Sci Adv. 2024 Jan 5;10(1):eadh7957. doi: 10.1126/sciadv.adh7957. Epub 2024 Jan 3.
8
Physical properties of the bacterial outer membrane.
Nat Rev Microbiol. 2022 Apr;20(4):236-248. doi: 10.1038/s41579-021-00638-0. Epub 2021 Nov 3.
9
Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.
Biophys J. 2021 Jan 19;120(2):217-231. doi: 10.1016/j.bpj.2020.12.003. Epub 2020 Dec 15.

本文引用的文献

1
Shifting foundations: the mechanical cell wall and development.
Curr Opin Plant Biol. 2016 Feb;29:115-20. doi: 10.1016/j.pbi.2015.12.009. Epub 2016 Jan 19.
2
Quantitative Imaging of Gut Microbiota Spatial Organization.
Cell Host Microbe. 2015 Oct 14;18(4):478-88. doi: 10.1016/j.chom.2015.09.002. Epub 2015 Oct 1.
3
Principles of bacterial cell-size determination revealed by cell-wall synthesis perturbations.
Cell Rep. 2014 Nov 20;9(4):1520-7. doi: 10.1016/j.celrep.2014.10.027. Epub 2014 Nov 6.
4
Expanded microbial genome coverage and improved protein family annotation in the COG database.
Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9. doi: 10.1093/nar/gku1223. Epub 2014 Nov 26.
6
Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium.
PLoS One. 2014 Jul 9;9(7):e99820. doi: 10.1371/journal.pone.0099820. eCollection 2014.
7
Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8197-202. doi: 10.1073/pnas.1400376111. Epub 2014 May 12.
8
Bending forces plastically deform growing bacterial cell walls.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5778-83. doi: 10.1073/pnas.1317497111. Epub 2014 Apr 7.
9
The actin homologue MreB organizes the bacterial cell membrane.
Nat Commun. 2014 Mar 7;5:3442. doi: 10.1038/ncomms4442.
10
A dynamically assembled cell wall synthesis machinery buffers cell growth.
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4554-9. doi: 10.1073/pnas.1313826111. Epub 2014 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验