Suppr超能文献

氧化电沉积的过渡金属(氧)氢氧化物薄膜作为析氧催化剂。

Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts.

机构信息

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland.

出版信息

J Am Chem Soc. 2016 Jul 20;138(28):8946-57. doi: 10.1021/jacs.6b05196. Epub 2016 Jul 8.

Abstract

The electrolysis of water to produce hydrogen and oxygen is a simple and attractive approach to store renewable energies in the form of chemical fuels. The oxygen evolution reaction (OER) is a complex four-electron process that constitutes the most energy-inefficient step in water electrolysis. Here we describe a novel electrochemical method for the deposition of a family of thin-film transition metal (oxy)hydroxides as OER catalysts. The thin films have nanodomains of crystallinity with lattice spacing similar to those of double-layered hydroxides. The loadings of these thin-film catalysts were accurately determined with a resolution of below 1 μg cm(-2) using an electrochemical quartz microcrystal balance. The loading-activity relations for various catalysts were established using voltammetry and impedance spectroscopy. The thin-film catalysts have up to four types of loading-activity dependence due to film nucleation and growth as well as the resistance of the films. A zone of intrinsic activity has been identified for all of the catalysts where the mass-averaged activity remains constant while the loading is increased. According to their intrinsic activities, the metal oxides can be classified into three categories: NiOx, MnOx, and FeOx belong to category I, which is the least active; CoOx and CoNiOx belong to category II, which has medium activity; and FeNiOx, CoFeOx, and CoFeNiOx belong to category III, which is the most active. The high turnover frequencies of CoFeOx and CoFeNiOx at low overpotentials and the simple deposition method allow the fabrication of high-performance anode electrodes coated with these catalysts. In 1 M KOH and with the most active electrode, overpotentials as low as 240 and 270 mV are required to reach 10 and 100 mA cm(-2), respectively.

摘要

水的电解产生氢气和氧气是一种将可再生能源以化学燃料形式储存的简单而有吸引力的方法。氧气析出反应(OER)是一个复杂的四电子过程,构成了水电解中能量效率最低的步骤。在这里,我们描述了一种新的电化学方法,用于沉积一系列薄膜过渡金属(氧)氢氧化物作为 OER 催化剂。这些薄膜具有纳米畴的结晶度,晶格间距与双层氢氧化物相似。使用电化学石英微天平,可以以低于 1μgcm-2 的分辨率准确确定这些薄膜催化剂的负载量。使用伏安法和阻抗谱建立了各种催化剂的负载量-活性关系。由于薄膜成核和生长以及薄膜的电阻,薄膜催化剂具有多达四种负载量-活性依赖性。已经确定了所有催化剂的固有活性区,其中质量平均活性在负载增加时保持恒定。根据它们的固有活性,金属氧化物可以分为三类:NiOx、MnOx 和 FeOx 属于活性最低的第一类;CoOx 和 CoNiOx 属于具有中等活性的第二类;FeNiOx、CoFeOx 和 CoFeNiOx 属于活性最高的第三类。CoFeOx 和 CoFeNiOx 在低过电势下具有高的周转频率和简单的沉积方法,允许用这些催化剂涂覆高性能的阳极电极。在 1MKOH 中,使用最活跃的电极,达到 10 和 100 mAcm-2 所需的过电势分别低至 240 和 270 mV。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验