Suppr超能文献

基于组学数据对鼠疫耶尔森菌91001菌株的重新注释

Reannotation of Yersinia pestis Strain 91001 Based on Omics Data.

作者信息

Mao Yiqing, Yang Xianwei, Liu Yang, Yan Yanfeng, Du Zongmin, Han Yanping, Song Yajun, Zhou Lei, Cui Yujun, Yang Ruifu

机构信息

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China. Center of Information Technology, Beijing Institute of Health and Medical Information, Beijing, People's Republic of China.

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.

出版信息

Am J Trop Med Hyg. 2016 Sep 7;95(3):562-70. doi: 10.4269/ajtmh.16-0215. Epub 2016 Jul 5.

Abstract

Yersinia pestis is among the most dangerous human pathogens, and systematic research of this pathogen is important in bacterial pathogenomics research. To fully interpret the biological functions, physiological characteristics, and pathogenesis of Y. pestis, a comprehensive annotation of its entire genome is necessary. The emergence of omics-based research has brought new opportunities to better annotate the genome of this pathogen. Here, the complete genome of Y. pestis strain 91001 was reannotated using genomics and proteogenomics data. One hundred and thirty-seven unreliable coding sequences were removed, and 41 homologous genes were relocated with their translational initiation sites, while the functions of seven pseudogenes and 392 hypothetical genes were revised. Moreover, annotations of noncoding RNAs, repeat sequences, and transposable elements have also been incorporated. The reannotated results are freely available at http://tody.bmi.ac.cn.

摘要

鼠疫耶尔森菌是最危险的人类病原体之一,对该病原体进行系统研究在细菌病原体组学研究中具有重要意义。为了全面阐释鼠疫耶尔森菌的生物学功能、生理特性和致病机制,有必要对其全基因组进行全面注释。基于组学的研究的出现为更好地注释该病原体的基因组带来了新机遇。在此,利用基因组学和蛋白质基因组学数据对鼠疫耶尔森菌91001菌株的完整基因组进行了重新注释。去除了137个不可靠的编码序列,41个同源基因的翻译起始位点得到重新定位,同时7个假基因和392个假定基因的功能也得到了修正。此外,还纳入了非编码RNA、重复序列和转座元件的注释。重新注释的结果可在http://tody.bmi.ac.cn免费获取。

相似文献

1
Reannotation of Yersinia pestis Strain 91001 Based on Omics Data.
Am J Trop Med Hyg. 2016 Sep 7;95(3):562-70. doi: 10.4269/ajtmh.16-0215. Epub 2016 Jul 5.
2
Genome reannotation of Escherichia coli CFT073 with new insights into virulence.
BMC Genomics. 2009 Nov 22;10:552. doi: 10.1186/1471-2164-10-552.
3
Yersinia pestis in the Age of Big Data.
Adv Exp Med Biol. 2016;918:257-272. doi: 10.1007/978-94-024-0890-4_9.
4
[Advance on genome research of bacteriophage].
Zhonghua Liu Xing Bing Xue Za Zhi. 2017 Apr 10;38(4):561-564. doi: 10.3760/cma.j.issn.0254-6450.2017.04.030.
5
Yersinia genome diversity disclosed by Yersinia pestis genome-wide DNA microarray.
Can J Microbiol. 2007 Nov;53(11):1211-21. doi: 10.1139/W07-087.
6
Genome and Evolution of Yersinia pestis.
Adv Exp Med Biol. 2016;918:171-192. doi: 10.1007/978-94-024-0890-4_6.
7
Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001.
Mol Biosyst. 2009 Apr;5(4):368-75. doi: 10.1039/b818710j. Epub 2009 Jan 26.
8
Plague in the genomic area.
Clin Microbiol Infect. 2012 Mar;18(3):224-30. doi: 10.1111/j.1469-0691.2012.03774.x.
10
Comparative omics-driven genome annotation refinement: application across Yersiniae.
PLoS One. 2012;7(3):e33903. doi: 10.1371/journal.pone.0033903. Epub 2012 Mar 27.

引用本文的文献

1
Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models.
Proteomics. 2020 Sep;20(17-18):e1900282. doi: 10.1002/pmic.201900282. Epub 2020 Jul 12.
2
BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Biovar Microtus.
Front Cell Infect Microbiol. 2018 Oct 2;8:347. doi: 10.3389/fcimb.2018.00347. eCollection 2018.

本文引用的文献

1
PANTHER version 10: expanded protein families and functions, and analysis tools.
Nucleic Acids Res. 2016 Jan 4;44(D1):D336-42. doi: 10.1093/nar/gkv1194. Epub 2015 Nov 17.
2
KEGG as a reference resource for gene and protein annotation.
Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. doi: 10.1093/nar/gkv1070. Epub 2015 Oct 17.
3
Omics Pipe: a community-based framework for reproducible multi-omics data analysis.
Bioinformatics. 2015 Jun 1;31(11):1724-8. doi: 10.1093/bioinformatics/btv061. Epub 2015 Jan 30.
4
HAMAP in 2015: updates to the protein family classification and annotation system.
Nucleic Acids Res. 2015 Jan;43(Database issue):D1064-70. doi: 10.1093/nar/gku1002. Epub 2014 Oct 27.
5
RAMONA: a Web application for gene set analysis on multilevel omics data.
Bioinformatics. 2015 Jan 1;31(1):128-30. doi: 10.1093/bioinformatics/btu610. Epub 2014 Sep 18.
6
eggNOG v4.0: nested orthology inference across 3686 organisms.
Nucleic Acids Res. 2014 Jan;42(Database issue):D231-9. doi: 10.1093/nar/gkt1253. Epub 2013 Dec 1.
7
Pfam: the protein families database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. doi: 10.1093/nar/gkt1223. Epub 2013 Nov 27.
8
Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis.
Nucleic Acids Res. 2014 Jan;42(Database issue):D240-5. doi: 10.1093/nar/gkt1205. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验