Suppr超能文献

底物泛素化调控蛋白酶体的解折叠能力。

Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.

作者信息

Reichard Eden L, Chirico Giavanna G, Dewey William J, Nassif Nicholas D, Bard Katelyn E, Millas Nickolas E, Kraut Daniel A

机构信息

From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085.

From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085

出版信息

J Biol Chem. 2016 Aug 26;291(35):18547-61. doi: 10.1074/jbc.M116.720151. Epub 2016 Jul 12.

Abstract

In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process.

摘要

在真核细胞中,蛋白质通过多聚泛素化被靶向运送到蛋白酶体进行降解。这些蛋白质与泛素受体结合,被蛋白酶体ATP酶作用并展开,然后被逐步降解。关于蛋白酶体能够在多大程度上成功展开并降解底物的决定因素,目前仍知之甚少。我们发现,附着在底物上的多聚泛素链的结构会影响蛋白酶体展开和降解底物的能力,其中K48连接或混合连接的链比K63连接的链具有更高的降解持续性。与泛素依赖性靶向相比,不依赖泛素的底物靶向蛋白酶体的降解持续性要低得多。因此,尽管泛素链在降解早期,即在底物结合过程中就被去除,但它们在显著影响蛋白质结构域随后的展开过程。我们的工作支持这样一种模型,即与底物相关的多聚泛素链将蛋白酶体转变为一种在整个降解过程中持续存在的激活状态。

相似文献

1
Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.
J Biol Chem. 2016 Aug 26;291(35):18547-61. doi: 10.1074/jbc.M116.720151. Epub 2016 Jul 12.
4
Mode of targeting to the proteasome determines GFP fate.
J Biol Chem. 2020 Nov 20;295(47):15892-15901. doi: 10.1074/jbc.RA120.015235. Epub 2020 Sep 10.
5
The Proteasome Distinguishes between Heterotypic and Homotypic Lysine-11-Linked Polyubiquitin Chains.
Cell Rep. 2015 Jul 28;12(4):545-53. doi: 10.1016/j.celrep.2015.06.061. Epub 2015 Jul 16.
6
K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1401-E1408. doi: 10.1073/pnas.1716673115. Epub 2018 Jan 29.
7
Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome.
Structure. 2020 Nov 3;28(11):1206-1217.e4. doi: 10.1016/j.str.2020.07.011. Epub 2020 Aug 11.
8
Proteasomal degradation of damaged polyubiquitin.
Biochem Biophys Res Commun. 2016 Feb 26;471(1):34-40. doi: 10.1016/j.bbrc.2016.02.006. Epub 2016 Feb 4.
9
Determination of Proteasomal Unfolding Ability.
Methods Mol Biol. 2021;2365:217-244. doi: 10.1007/978-1-0716-1665-9_12.
10
The recognition of ubiquitinated proteins by the proteasome.
Cell Mol Life Sci. 2016 Sep;73(18):3497-506. doi: 10.1007/s00018-016-2255-5. Epub 2016 May 2.

引用本文的文献

1
The emerging roles of ubiquitin-like modifications in regulating HIV replication and host defense.
Front Cell Infect Microbiol. 2025 Jun 11;15:1593445. doi: 10.3389/fcimb.2025.1593445. eCollection 2025.
2
The deubiquitinase Rpn11 functions as an allosteric ubiquitin sensor to promote substrate engagement by the 26S proteasome.
Cell Rep. 2025 Jun 24;44(6):115736. doi: 10.1016/j.celrep.2025.115736. Epub 2025 May 22.
3
UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains.
Mol Cell. 2025 Apr 3;85(7):1467-1476.e6. doi: 10.1016/j.molcel.2025.02.021. Epub 2025 Mar 24.
5
Mechanisms and regulation of substrate degradation by the 26S proteasome.
Nat Rev Mol Cell Biol. 2025 Feb;26(2):104-122. doi: 10.1038/s41580-024-00778-0. Epub 2024 Oct 3.
6
Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2405964121. doi: 10.1073/pnas.2405964121. Epub 2024 Aug 9.
7
Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate.
bioRxiv. 2024 Jun 20:2024.03.15.585243. doi: 10.1101/2024.03.15.585243.
8
Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions.
Molecules. 2023 Sep 21;28(18):6740. doi: 10.3390/molecules28186740.
9
Substrate-specific effects of natural genetic variation on proteasome activity.
PLoS Genet. 2023 May 1;19(5):e1010734. doi: 10.1371/journal.pgen.1010734. eCollection 2023 May.
10
Ubiquitin modulates 26 proteasome conformational dynamics and promotes substrate degradation.
Sci Adv. 2022 Dec 23;8(51):eadd9520. doi: 10.1126/sciadv.add9520.

本文引用的文献

2
Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers.
Mol Biol Cell. 2016 Jan 15;27(2):360-70. doi: 10.1091/mbc.E15-07-0525. Epub 2015 Nov 25.
3
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome.
Nat Struct Mol Biol. 2015 Sep;22(9):712-9. doi: 10.1038/nsmb.3075. Epub 2015 Aug 24.
4
Regulation of Proteasomal Degradation by Modulating Proteasomal Initiation Regions.
ACS Chem Biol. 2015 Nov 20;10(11):2537-43. doi: 10.1021/acschembio.5b00554. Epub 2015 Aug 21.
5
Structural characterization of the interaction of Ubp6 with the 26S proteasome.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8626-31. doi: 10.1073/pnas.1510449112. Epub 2015 Jun 30.
6
Nonspecific yet decisive: Ubiquitination can affect the native-state dynamics of the modified protein.
Protein Sci. 2015 Oct;24(10):1580-92. doi: 10.1002/pro.2688. Epub 2015 Jun 9.
8
Substrate degradation by the proteasome: a single-molecule kinetic analysis.
Science. 2015 Apr 10;348(6231):1250834. doi: 10.1126/science.1250834.
9
Assembly and specific recognition of k29- and k33-linked polyubiquitin.
Mol Cell. 2015 Apr 2;58(1):95-109. doi: 10.1016/j.molcel.2015.01.042. Epub 2015 Mar 5.
10
Sequence composition of disordered regions fine-tunes protein half-life.
Nat Struct Mol Biol. 2015 Mar;22(3):214-21. doi: 10.1038/nsmb.2958. Epub 2015 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验