Padhorny Dzmitry, Kazennov Andrey, Zerbe Brandon S, Porter Kathryn A, Xia Bing, Mottarella Scott E, Kholodov Yaroslav, Ritchie David W, Vajda Sandor, Kozakov Dima
Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794; Moscow Institute of Physics and Technology, Moscow Region 141700, Russia;
Moscow Institute of Physics and Technology, Moscow Region 141700, Russia;
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4286-93. doi: 10.1073/pnas.1603929113. Epub 2016 Jul 13.
Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein-protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold [Formula: see text], where [Formula: see text] is the rotation group representing the space of the rotating ligand, and [Formula: see text] is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for [Formula: see text] Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring.
使用快速傅里叶变换(FFT)进行能量评估能够对数十亿个假定的复杂结构进行采样,从而彻底改变了刚性蛋白质-蛋白质对接。然而,在当前方法中,仅在平移或旋转子空间中实现了高效加速。开发一种将基于FFT的采样扩展到五个旋转坐标的高效且准确的对接方法是一个经过广泛研究但仍未解决的问题。这里提出的算法保留了早期方法的准确性,但速度至少提高了10倍。这种改进归功于两项创新。首先,搜索空间被视为乘积流形[公式:见原文],其中[公式:见原文]是表示旋转配体空间的旋转群,[公式:见原文]是由两个欧拉角所跨越的空间,这两个欧拉角定义了从固定受体中心指向配体中心的向量的方向。这种表示使得能够使用为[公式:见原文]开发的高效FFT方法。其次,我们选择对接结构的高占据簇的中心,而不是最低能量构象,作为复合物的预测,因此在能量评估中不需要非常高的精度。因此,在傅里叶空间中使用有限数量的球基函数就足够了,这在保持对接结果准确性的同时提高了采样效率。该方法的一个主要优点是,与经典方法相比,增加相关函数项的数量在计算上成本较低,这使得能够使用复杂的能量函数进行评分。