Suppr超能文献

刺猬蛋白消耗甾体类CYP17A1拮抗剂:对晚期前列腺癌的潜在治疗意义

Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer.

作者信息

Bordeau Brandon M, Ciulla Daniel A, Callahan Brian P

机构信息

Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.

出版信息

ChemMedChem. 2016 Sep 20;11(18):1983-6. doi: 10.1002/cmdc.201600238. Epub 2016 Jul 20.

Abstract

Abiraterone, a potent inhibitor of the human enzyme CYP17A1 (cytochrome P450c17), provides a last line of defense against ectopic androgenesis in advanced prostate cancer. Herein we report an unprecedented off-target interaction between abiraterone and oncogenic hedgehog proteins. Our experiments indicate that abiraterone and its structural congener, galeterone, can replace cholesterol as a substrate in a specialized biosynthetic event of hedgehog proteins, known as cholesterolysis. The off-target reaction generates covalent hedgehog-drug conjugates. Cell-based reporter assays indicate that these conjugates activate hedgehog signaling when present in the low nanomolar range. Because hedgehog signaling is implicated in prostate cancer progression, and abiraterone is administered to treat advanced stages of the disease, this off-target interaction may have therapeutic significance.

摘要

阿比特龙是一种强效的人类酶CYP17A1(细胞色素P450c17)抑制剂,为晚期前列腺癌中异位雄激素生成提供了最后一道防线。在此我们报告了阿比特龙与致癌性刺猬蛋白之间前所未有的脱靶相互作用。我们的实验表明,阿比特龙及其结构类似物加列酮,可以在刺猬蛋白的一种特殊生物合成事件(即胆固醇分解)中替代胆固醇作为底物。这种脱靶反应产生共价的刺猬蛋白 - 药物缀合物。基于细胞的报告基因检测表明,当这些缀合物以低纳摩尔浓度存在时,它们会激活刺猬信号通路。由于刺猬信号通路与前列腺癌进展有关,且阿比特龙用于治疗该疾病的晚期阶段,这种脱靶相互作用可能具有治疗意义。

相似文献

1
Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer.
ChemMedChem. 2016 Sep 20;11(18):1983-6. doi: 10.1002/cmdc.201600238. Epub 2016 Jul 20.
2
Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer.
Nature. 2015 Jul 16;523(7560):347-51. doi: 10.1038/nature14406. Epub 2015 Jun 1.
3
CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2.
J Steroid Biochem Mol Biol. 2017 Nov;174:192-200. doi: 10.1016/j.jsbmb.2017.09.007. Epub 2017 Sep 8.
4
Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001.
Nature. 2012 Jan 22;482(7383):116-9. doi: 10.1038/nature10743.
6
Illuminating cytochrome P450 binding: Ru(ii)-caged inhibitors of CYP17A1.
Chem Commun (Camb). 2017 Mar 28;53(26):3673-3676. doi: 10.1039/c7cc01459g.
7
Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis.
Biochem Biophys Res Commun. 2016 Sep 2;477(4):1005-1010. doi: 10.1016/j.bbrc.2016.07.019. Epub 2016 Jul 6.
9
Slow-, Tight-Binding Inhibition of CYP17A1 by Abiraterone Redefines Its Kinetic Selectivity and Dosing Regimen.
J Pharmacol Exp Ther. 2020 Sep;374(3):438-451. doi: 10.1124/jpet.120.265868. Epub 2020 Jun 17.

引用本文的文献

1
Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets.
Nat Rev Cancer. 2024 Apr;24(4):240-260. doi: 10.1038/s41568-024-00666-x. Epub 2024 Feb 29.
2
Paracatalytic induction: Subverting specificity in hedgehog protein autoprocessing with small molecules.
Methods Enzymol. 2023;685:1-41. doi: 10.1016/bs.mie.2023.03.001. Epub 2023 Apr 19.
3
Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery.
Front Mol Biosci. 2022 May 20;9:900560. doi: 10.3389/fmolb.2022.900560. eCollection 2022.
4
Subverting Hedgehog Protein Autoprocessing by Chemical Induction of Paracatalysis.
Biochemistry. 2020 Feb 18;59(6):736-741. doi: 10.1021/acs.biochem.0c00013. Epub 2020 Feb 4.
5
General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing.
J Am Chem Soc. 2019 Nov 20;141(46):18380-18384. doi: 10.1021/jacs.9b08914. Epub 2019 Nov 7.
6
Protein-Nucleic Acid Conjugation with Sterol Linkers Using Hedgehog Autoprocessing.
Bioconjug Chem. 2019 Nov 20;30(11):2799-2804. doi: 10.1021/acs.bioconjchem.9b00550. Epub 2019 Oct 10.
9
Illuminating cytochrome P450 binding: Ru(ii)-caged inhibitors of CYP17A1.
Chem Commun (Camb). 2017 Mar 28;53(26):3673-3676. doi: 10.1039/c7cc01459g.
10
A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing.
J Am Chem Soc. 2016 Aug 31;138(34):10806-9. doi: 10.1021/jacs.6b06928. Epub 2016 Aug 19.

本文引用的文献

1
Multitarget Drug Discovery and Polypharmacology.
ChemMedChem. 2016 Jun 20;11(12):1190-2. doi: 10.1002/cmdc.201600161. Epub 2016 Apr 9.
2
Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment.
Mol Cancer. 2016 Mar 18;15:24. doi: 10.1186/s12943-016-0509-3.
4
Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer.
Nat Rev Cancer. 2015 Dec;15(12):701-11. doi: 10.1038/nrc4016. Epub 2015 Nov 13.
5
Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor.
Anal Biochem. 2015 Nov 1;488:1-5. doi: 10.1016/j.ab.2015.06.021. Epub 2015 Jun 18.
6
Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer.
Nature. 2015 Jul 16;523(7560):347-51. doi: 10.1038/nature14406. Epub 2015 Jun 1.
7
Cholesterylation: a tail of hedgehog.
Biochem Soc Trans. 2015 Apr;43(2):262-7. doi: 10.1042/BST20150032.
8
Zinc inhibits Hedgehog autoprocessing: linking zinc deficiency with Hedgehog activation.
J Biol Chem. 2015 May 1;290(18):11591-600. doi: 10.1074/jbc.M114.623264. Epub 2015 Mar 18.
9
Identification of a family of fatty-acid-speciated sonic hedgehog proteins, whose members display differential biological properties.
Cell Rep. 2015 Mar 3;10(8):1280-1287. doi: 10.1016/j.celrep.2015.01.058. Epub 2015 Feb 26.
10
Hedgehog signaling in prostate epithelial-mesenchymal growth regulation.
Dev Biol. 2015 Apr 1;400(1):94-104. doi: 10.1016/j.ydbio.2015.01.019. Epub 2015 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验